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Abstract—This paper presents a highly parallel solution for
cross-document coreference resolution, which can deal with
billions of documents that exist in the current web. At the core
of our solution lies a novel algorithm for community detection in
large scale graphs. We operate on graphs which we construct by
representing documents’ keywords as nodes and the co-location
of those keywords in a document as edges. We then exploit the
particular nature of such graphs where coreferent words are
topologically clustered and can be efficiently discovered by our
community detection algorithm. The accuracy of our technique
is considerably higher than that of the state of the art, while
the convergence time is by far shorter. In particular, we increase
the accuracy for a baseline dataset by more than 15% compared
to the best reported result so far. Moreover, we outperform the
best reported result for a dataset provided for the Word Sense
Induction task in SemEval 2010.

I. INTRODUCTION

Resolving entities in a text may not always be a difficult
task for humans. When one comes across Mercury in an article
about the solar system, they instantly think of Mercury, the
planet, and not about Mercury, the chemical element or Freddie
Mercury. For a computer though, such a disambiguation re-
quires a considerable amount of processing. This problem, i.e.,
the task of disambiguating manifestations of real world entities
in various records or mentions, is known as Entity Resolution
or Coreference Resolution. Often disambiguation is required
across multiple documents. Given a set of such documents
with an ambiguous mention (Mercury, for example), the Cross-
Document Coreference problem seeks to group together those
documents that talk about the same entity in real world (e.g.,
one group for the planet, one for the chemical element, etc.).

This problem is challenging because: (i) often the number
of underlying entities and their identities are not known (e.g.,
we do not know how many different Mercuries are to be
discovered), and (ii) the number of possible classifications
grows exponentially with the number of input documents.

A widely used approach to this problem, known as
Mention-Pair model, is to compute a pair-wise similarity value
based on the common keywords that exist in each pair of
documents [2]. If two documents are found similar more than
a predefined threshold, they are classified together. Finally, a
clustering step is required to partition the mentions into coref-
erent groups. The clustering itself is a challenging task and is
known to be NP-hard. In the related work section, we discuss
some of the approximate solutions that address this problem.
As we will see, the high complexity of the Mention-Pair model

renders it impractical for web-scale coreference, where we
have to process millions of documents in a reasonable time.

In this paper1 we propose a novel approach to coreference
resolution, which does not require separate classification and
clustering steps. Instead, we transform the problem to a node-
centric graph processing task. This enables us to take advan-
tage of the recent advances in graph processing frameworks,
such as GraphChi [16] or GraphLab [18], and apply our
algorithm to extremely large graphs.

To construct the graph, we create two types of nodes.
One type represents the ambiguous word, which we assume
is given in advance. Another type of nodes represents the
unambiguous words that surround the ambiguous word in each
document. Since we do not know whether or not different
mentions of the ambiguous word are referring to the same
real-world entity, we create as many nodes as the number of
documents mentioning them. The unambiguous words might
as well appear in multiple documents. For them, however, we
do not create a new node, if they already exist. Finally, we
add an edge between two nodes, if their corresponding words
co-occurred in the same document. Consequently, each single
document is represented by a full mesh, or clique, of all its
keywords.

The constructed graph for our Mercury example is de-
picted in Figure 1(b). As shown, some cliques overlap, which
indicates that their corresponding documents have a similar
context. In fact, the main insight to our work is that the topo-
logical community structure of the constructed graph identifies
similar contexts and thus, is an accurate indicator of the coref-
erence classification. Based on this fact, we propose a novel
community detection algorithm for coreference resolution. Our
algorithm is diffusion based and exploits the fundamentals of
flow networks. In such a network each node has a capacity
and each edge can transfer a flow, just like a pipe, between
two nodes. We envision multiple flows in our graph, one per
community. To distinguish these flows, we assign a distinct
color to each of them.

Initially each single document constitutes a distinct com-
munity, i.e., it will be assigned to a unique color. All the
nodes that belong to a document will get a unit of the color of
their document. Therefore, those nodes that are shared between
documents, will receive multiple units of colors. However,
each node always identifies itself with only one single color,

1This work was funded (in part) by the European Commission within the
Marie Curie ITN ”iSocial” (grant PITN-GA-2012-316808).
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(a) Fragments of several documents, all with
a mention of “Mercury”, which is ambiguous.
The underlined words, represent the context
of the the ambiguous word in each document.
Initially each document is assigned to a unique
color.

(b) Each context words is represented by a
node in the graph and gets one or more color(s)
that correspond(s) to the document(s) it oc-
curred in. An edge between two nodes implies
the collocation of them in the same document.
Node border colors indicate the dominant color
in the vicinity of each node.

R
ep
os
ito

ry

Conduct.

Gold

Silver

Heat

Planet

M.6

M.2

Sun

Material

Water

Earth

Orbit

Metal

Alloy

M.1 M.5

Aircraft

Alumin.

M.4

M.3

(c) The final coloring scheme identifies the
communities of the graph. Mercury 1, 4, and
5, all belong to the red community, thus, are
considered to be coreferent. Likewise, Mercury
2, 3, and 6 are considered to be coreferent
because of the aqua community. The unused
colors reside in a repository.

Fig. 1. The main steps towards coreference resolution

which has the highest collective volume in its neighborhood
(including the node itself), so-called the dominant color. The
initial coloring scheme of our Mercury graph is shown in
Figure 1(b). Nodes continuously exchange parts of their colors
with their neighbors by diffusing the colors through their
links. Therefore, the available volume of color at nodes, and
accordingly the dominant color in their vicinity, changes during
the course of algorithm. We will show that with appropriate
diffusion policies it is possible to accumulate one distinct
color in each of the well connected regions of the graph,
e.g., as in Figure 1(c). Finally, the ambiguous nodes that
end up having the same dominant color are considered to be
coreferent. Since our constructed graph is sparse, the overhead
of such computation remains low (for complexity analysis
see Section III-D). Moreover, we can produce more accurate
results, compared to the state of the art. This twofold gain is
owed to the combination of two ideas, that constitute our main
contributions:

• a technique for transforming the expensive coreference
problem, into a graph problem, in which the coreferent
words belong to the same topological community
structure. The graph that we construct is sparse, be-
cause those documents that have dissimilar contexts,
will have very few or even no direct connections.
The computations on the graph are performed per
edge basis, i.e., only if there is an edge between two
nodes, they will communicate some flows. Hence, the
irrelevant documents which are weakly connected, if
not disconnected, will not impose any computation
in the graph. At the same time, a more thorough
search of the solution space is possible, as we are
not limited to pair-wise similarity discoveries only.
Instead, similarity between any number of documents
is naturally captured within the community structures
that emerge from the inter-linked context words.

• a novel node-centric diffusion-based community de-

tection algorithm that mainly uses local knowledge of
the graph at each node. Hence, it allows for highly
parallel computations and usage of the existing graph
processing frameworks.

We run our algorithm on different datasets, which are
transformed to graphs with distinct structural properties. For
example, on a baseline dataset for person name disambigua-
tion, we produce a classification with an F-score 15% higher
than that of the state of the art algorithm by Singh et al. [34].
Moreover, on a dataset provided in the Word Sense Induction
task of SemEval 2010, we achieved as good F-score as the best
reported result. However, we considerably outperform the other
solutions with respect to a complementary accuracy metric,
which measures the average number of detected communities.

II. TERMINOLOGY

The main terms that we are going to use hereafter are:

• Entity is a unique representation of some-
one/something in the real world, e.g., “Paris
Hilton”.

• Mention (or target word) is a literal manifestation of a
real world entity. Since multiple entities could share a
similar name, mentions can sometimes be ambiguous,
e.g., “Paris” in the sentence “Paris is nice.”, which
could refer to the capital city of France, the city in
Texas, Paris Hilton, or many other possibilities. Two
mentions are said to be coreferent, if they refer to the
same real world entity.

• Context of an ambiguous mention M is a set of
unambiguous mentions surrounding mention M. For
example, in Figure 1(a), the underlined words in
each sentence constitute the context of the ambiguous
word Mercury in that sentence. Note, extracting an
appropriate context for a mention is not trivial, and is
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an active field of research. However, this task is out of
the scope of this paper, and we only use the extracted
context as an input to our algorithm.

• Community or cluster in a graph is a densely con-
nected component. Community detection is the task
of grouping the vertices of the graph into clusters
taking into consideration the edge structure of the
graph in such a way that there should be many edges
within each cluster and relatively few between the
clusters. Note, this problem is different from graph
partitioning, where the goal is to divide the graph
into a predefined number of roughly equal size compo-
nents, such that the number of edges crossing different
component is minimum (a.k.a., the min-cut problem).
In Community detection we neither know the number
of existing communities nor the size of them.

III. SOLUTION

Given an ambiguous word 2 and a set of documents
with preprocessed context words, we classify the ambiguous
words into coreferent groups in two main steps: (i) Graph
Construction, and (ii) Community Detection.

A. Graph Construction

We create a weighted undirected graph using the ambigu-
ous and unambiguous words as nodes. For the ambiguous word
we always create a new node per document. We call such nodes
the target nodes, as those are the nodes we aim to classify. For
the non-ambiguous words, if a matching node already exists,
we reuse it; otherwise, we create a new node. Moreover, if two
words have appeared together in a document, we add an edge
between the nodes representing them. The resulting graph is
weighted, as some words may frequently appear together in
multiple documents. More precisely, the weight of each edge
is proportional to the number of documents that contain both
endpoint nodes of that edge.

The graph corresponding to our Mercury example is de-
picted in Figure 1(b). Each mention of Mercury has a distinct
node in the graph, tagged with its document identifier. Edge
thickness (weight) between pair of nodes is relative to the
number of times the two words have appeared together across
different sentences. Now our task is to classify these Mercury
nodes into several (ideally two, in this case) clusters, where
all the Mercuries in a cluster refer to the same entity. Note,
we do not know, in advance, how many different Mercuries
are expected to be resolved, i.e., we do not know the number
of expected clusters/communities.

B. Community Detection

We propose a massively parallel diffusion based algorithm
for community detection. Without lack of generality, we as-
sume that the algorithm proceeds in rounds.

2Our solution is not limited to a single ambiguous word and we can have
multiple of such words. However, for the sake of clarity, we consider the case
with one ambiguous word only. To discover which word(s) is(are) ambiguous,
is a different problem which is orthogonal to our work and out of the scope
of this paper.

1) Initialization: Initially, each document is associated with
a distinct color. Every node is given a unit of color correspond-
ing to the color of the document that holds it. Accordingly,
if a node belongs to multiple documents, it receives multiple
colors.

Each node identifies itself with a dominant color, which is
the color with the highest total volume among the node and
its neighbors 3. The dominant color of a node also indicates
the community that the node belongs to.

2) Diffusion: Every node repeatedly runs the diffusion al-
gorithm, until the convergence criteria, defined in section III-C,
is satisfied. In each round a node sends out some amount of
color to its neighboring nodes, and likewise, receives some
amount of color from its neighbors. The key point is to decide
which color or colors should be sent out and in what quantity.
This decision is made locally at each node and is based on
one main objective, that is, each node tries to change its color
to the one that is dominant in its neighborhood, i.e., the color
with the largest collective quantity across its neighbors and the
node itself.

The effort that a node makes to change its color to the
dominant color (or maintain it, if it already has the dominant
color) consists of two main forces: (i) an attraction force
that conserves the dominant color, and (ii) a repulsion force
that evacuates all the non-dominant colors. The algorithm is
further completed with a recycling mechanism that nourishes
the diffusion by collecting the colors from the regions where
they are non-dominant and putting them back into the regions
where they can become influential again.

Note, since the colors only flow through the edges of the
graph to the neighboring nodes, disconnected components will
never get the same color, as there will be no link connecting
them and carrying the flows. This property of the solution is
desirable, because disjoint clusters indicate disparate contexts
and are not expected to be in the same coreference chain.

The diffusion algorithm at each node is composed of the
following three rules:

• Attract: Keep fraction α of the dominant color, and
divide the rest between neighbors. The attraction force
should be applied with a subtlety. If nodes are too
greedy, meaning that they do not let any dominant
color to leak out, then there will be no chance that
their neighboring nodes, which have a different color,
will get influenced and change their color. On the
other hand, if the leakage is too high, all the colors
will freely and rapidly explore the entire graph, and
the concentration of a distinct dominant color in
each of the community structures will not take place.
However, if nodes allow for an appropriate amount of
leakage, i.e., α , over time they not only maintain their
color, but also might be able to expand their territory
and let more nodes into their community. Parameter α
determines to what extent the communities are likely
to merge, thus, controls the resolution of the detected
communities. A bigger α produces more communities
with smaller sizes, whereas a smaller α is likely to

3We break the ties with some globally known ordering of colors, e.g., least
color id.
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produce fewer communities of a bigger size. The
fraction (1-α) of the dominant color is then shared
between all the neighbors, proportional to the the
weight of the edge to the neighbors.

• Repel: Divide all the non-dominant colors between
the neighbors. With this rule, nodes evacuate the non-
dominant colors. If a color is not dominant in any
region, it will be subject to this repulsion force all
over the graph, and thus it will be highly fragmented.
Consequently, no node will identify itself with that
color, as though the color has disappeared from the
graph. On the other hand, there are colors that are
recessive in some region, but dominant in another
region. This repulsion force allows such colors to flow
in the graph and be absorbed in the regions, where
there is an attraction force for them. Note, here again
the colors are divided between neighbors, proportional
to the weight of the edges. That is, if an edge has a
weight that is twice as big as another edge, then it
will carry twice the amount of color accordingly.

• Recycle: If surrounded by neighbors of the same
dominant color, send all the non-dominant colors (if
any) to a repository, and get some dominant color
from the repository (if there is any). The repulsion
force works blindly, meaning that the non-dominant
colors are sent to all directions, with the hope that they
might encounter an attraction force in the neighboring
nodes. But a node may be completely surrounded by
nodes of the same dominant color as the node itself.
We call such a node, an interior node. Consider a
node with the dominant color red, surrounded by
neighbors of the same dominant color. If such a node
receives some blue color, sending it to the neighbors,
would only disturb the red territory. Instead of blindly
repelling non-dominant flows, interior nodes take a
more efficient approach, by sending the non-dominant
colors directly to a repository, where all such colors
are accumulated. The repository is accessible by all
the nodes and acts as a container for the colors that
are collected from the graph. It also keeps track of the
number of interior nodes per color.
The recycling process is completed by putting the
abandoned colors back in the regions where they
are dominant. When an interior node send some
non-dominant color to the repository, in return, the
repository send a share of the the node’s dominant
color back to it. The amount of this share depends
on the available amount of the dominant color in the
repository as well as the number of interior nodes
that require it. Since the repository knows the number
of such nodes, it divides the color equally between
them. The augmented amount of the dominant color
in the interior nodes will then help taking over the
neighboring regions, if they are strongly connected to
the reinforced community. Those colors that are not
dominant in any region of the graph will remain in
the repository for ever, and will never again flow in
the graph. Consequently, over time, nodes of the graph
have to deal with fewer and fewer number of colors,
which makes their computations much faster and more
efficient.

C. Convergence

When the coloring scheme of the graph does not change
any more, and we remain in a stationary state, we consider the
algorithm is converged. At the convergence time, the coloring
scheme of the whole graph determines the clustering of the
nodes. More precisely, the target nodes that have the same
dominant color at the end, will be considered as coreferent.
Also, the number of different colors for the target nodes
indicate the number of different references for the ambiguous
word.

D. Complexity

In this section, we give some bounds on the complexity of
our algorithm. First of all, if N is the number of documents,
and if we choose on average c words from each document,
the number of nodes would be at most c × N , which is
O(N). In each round, every node communicates with its
neighboring nodes. If d indicates the degree of a node, then the
communication complexity of the algorithm in each round is
O(N×d), where d represents the average node degree. Hence,
the overall complexity will be O(N × d× rounds).

The maximum number of rounds before convergence is
proportional to the time required for the existing colors in the
graph to spread out to all the reachable regions. Therefore,
it is proportional to the diameter of the biggest connected
component in the constructed graph. It is important to note
that the diameter of the graph is inversely proportional to
the average node degree, means if the average node degree is
higher, the expected number of rounds is lower. Also note that
our constructed graph is sparse, i.e., the average node degree
is far less than N . Hence, in practice, O(N × d × rounds)
becomes significantly smaller than O(N2), which makes the
large-scale coreference feasible.

IV. EXPERIMENTS

Our algorithm is vertex-centric and can be deployed over
any of the existing graph processing frameworks, such as
Graphlab [18] or Graphchi [16], which are proven to be
scalable, efficient and fast. At the moment we are using
Graphchi framework [16], which is a disk-based system for
efficient computations on graphs with billions of edges. We
have implemented the color repository as an object that is
shared between all nodes, i.e., all the nodes can access this
repository. We ran several experiments to tune parameter α
that is used in the Attract rule. We concluded that the best
result is achieved when α is set to 2

3 .

A. Metrics

We compare our detected communities (of target words)
with the true classification of coreferent words, using a metric,
called B3, which breaks down to a few other metrics. For every
target word:

• B3Precision is the fraction of detected coreferents that
are actually coreferent with it.

• B3Recall is the fraction of its actual coreferents that
are detected as being coreferent with it.
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We then calculate the overall Precision and Recall by
taking the average of B3Precisions and B3Recalls for all the
target words (documents). To clarify these metrics, note that
if we put each document in a separate community, we will
have 100 percent precision, because no irrelevant words are
wrongly grouped together. This naive way of clustering shows
that precision alone, can not give us an idea how accurate our
clustering is. Hence, we need other complementary metrics.
Now, if we put all the documents in one single community,
we will have 100 percent recall. This is again an extreme
case, where we do not produce meaningful clusters, thus, the
precision will be very low. Therefore, we use the harmonic
mean of these two metrics, which is widely known as F1-
Score. Since we compute the precision and recall based on
B3, our F1-score is also a B3 score:

B3F1 = 2× B3Presicion×B3Recall

B3Precision+B3Recall

Hereafter, whenever we use the terms precision, recall
or F1-score we always refer to the B3 variants of these
metrics. Moreover, to be comparable to other reported results
for the SemEval dataset, we use the evaluation script, given
for the same task. In addition to precision, recall and F1-
score, this script measures the average number of detected
clusters. Therefore, we also measure this additional metric in
our SemEval experiments.

B. Results

We have used three different datasets, namely Chris An-
dreson, John Smith, and SemEval. For the first two datasets we
have used OpenCalais [1] to extract the name entity mentions
as context. For the SemEval task we have used all the context
words. The results for each dataset are reported separately.

1) Chris Anderson Corpus: This corpus, provided by our
industrial partner Recorder Future4, is extracted from 1185
documents from the web. Each document contains a reference
to one out of 8 persons, named Chris Anderson.

The graph produced for this dataset is depicted in Figure 2.
We monitored the progress of our community detection algo-
rithm and have reported the accuracy metrics in each round
in Figure 3. As shown, in the very beginning the precision is
100%, because each document is considered to be a distinct
community, thus, no two documents are wrongly classified
together. However, the recall is very low, because no two
documents are correctly classified together either. Over time,
as the communities merge, recall improves considerably, at
the cost of a small downgrade in precision. Overall, the F1-
score increases significantly up to a certain level, by then the
community detection algorithm has converged. We observe that
after only 7 rounds the community detection algorithm has
converged and the final communities are detected with more
than 85% accuracy.

Note, the fast convergence of the algorithm is due to the
topological properties of this specific graph. As shown in
Figure 2, the small non-ambiguous nodes constitute only a
small fraction of the nodes in the graph. This means, the

4www.recordedfuture.com

Fig. 2. Chris Anderson Graph. The ambiguous nodes are depicted in larger
size. The coloring scheme represent the true clustering.
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Fig. 3. Chris Anderson Accuracy over time

ambiguous words that are coreferent have extremely similar
context. Thus, their cliques are tightly connected, and it takes
very few steps for one dominant color to take over the
tightly connected regions of the graph. Moreover, some of the
communities that have the same color in Figure 2, are not even
connected. This means that the vector of the terms extracted
from their corresponding document are not informative enough
for the two documents to be classified together. In such cases,
we do not expect our algorithm to merge the two communities,
as there is no way any color will flow from one to another.
In fact, no other solution could do any better with only this
incomplete information.

2) John Smith Corpus: This corpus, originally introduced
by Bagga and Baldwin [2], contains 197 New York Times
articles about 35 different people named John Smith. Each
article mentions a single John Smith. Twenty four clusters
contain a single document, while the rest contain the following
numbers of documents: 2, 2, 2, 4, 4, 5, 9, 15, 20, 22, 88. This
dataset gives us a different graph type, as shown in figure 4.

The progress of precision, recall and F1-score over time is
depicted in Figure 5. Again we start with 100% precision and
a very low recall. As shown, it takes longer for the algorithm
to converge. This is expected, because as opposed to Chris
Anderson graph, there are so many small clusters connected
by very few links (See Figure 4). Here, the fraction of non-
ambiguous (small dots) to ambiguous nodes (depicted with a
larger size) is not negligible. Therefore, it takes longer for a
color to reach out to other regions of the graph and explore any
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Fig. 4. John Smith Graph. The ambiguous nodes are depicted in larger size.
The coloring scheme represent the true clustering.
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Fig. 5. John Smith Accuracy over time

potential community merge possibilities. Finally, when we do
not observe any more change, the F1-score is over 80%. It is
important to compare this result with other existing solutions
that have worked with this same dataset. For example, in a nice
work by Singh et al. [34] from Google, which has also proved
scalable, F1-score is reported to be 66.4%. Also, the best
reported result so far is 69.7%, by Rao et al. [29]. This means
we have increased the accuracy more than 15% compared to
the state-of-the-art.

3) SemEval 2010, WSI task: This dataset [19] was given as
the test data for the Word Sense Induction and Disambiguation
task in SemEval 2010. As opposed to the John Smith and Chris
Anderson datasets, the work on this dataset is not limited to
person name entity resolution. The texts come from various
news sources including the Wall Street Journal, CNN, ABC
and others. It includes 50 ambiguous nouns and 50 ambiguous
verbs. Each test instance consisted of a maximum of three
sentences.

Here again we construct our graph for each word separately
and apply our community detection algorithm. The evaluation
script provided in the task, enables us to report the results
for nouns only, verbs only, or all the words. The results
are reported in Figure 6. Our solution produces clusterings
with F1-scores 62.2, 70.7, and 56.4 for “all”, “verbs”, and
“nouns”, respectively. Among the reported results so far, only
Duluth-WSI-SVD-Gap [19] has a slightly higher F1-Score than
us (63.3, 72.4, and 57.0 percent accuracy for “all”, “verbs”
and “nouns”, respectively). However, the average number of

Fig. 6. Accuracy result for SemEval dataset

clusters found by this solution (#Cl in Figure 6) is 1.02, which
is far from the actual numbers (4.46 for nouns, 3.12 for verbs,
and 3.79 for all). In fact, this result is very close to a naive
clustering, known as the most frequent clustering (MFS), in
which all the mentions of a word are classified into one single
cluster, hence the average number of clusters per word is 1.
With our solution, however, the average number of clusters is
3.61, which is much closer to the actual number of clusters in
the golden truth. In [14], which bears the closest resemblance
to our work, the best reported F1-score is 63.4.

V. RELATED WORK

We organize this section in two main parts. In the first
part we summarize the related work on Coreference, which is
the problem that we are addressing. Since our solution is a
community detection algorithm, in the second part we survey
the existing solutions for graph clustering and community
detection.

A. Related Work in Cross-Document Coreference

Coreference is one of the complicated NLP problems that
has received a lot of attention in the community, and has
yielded numerous solutions. Several publications has already
surveyed the coreference research in details [35], [23], [25].
Due to the space limitations, we focus on the related work in
cross-document coreference resolution, which is the problem
addressed in this paper. Since we use a graph-based solution,
we also overview some of the existing graph-based approaches.

One of the most well-known approaches to cross-document
coreference is presented by Bagga and Baldwin [2]. They used
the original vector space model introduced in [31], in which
every document is represented by a vector of its terms. These
terms are weighted proportional to their frequency in the text.
Then a similarity measure between each pair of documents
is computed based on the common terms in the two docu-
ments, also considering their weights. If the similarity of two
documents is above a predefined threshold, then the entity of
interest in those two documents are considered to be coreferent.
This approach is still widely used and several improvements
to it are proposed [36], [30], [10]. These solutions generally
fall into the category of mention-pair models [25] and require
a final clustering step after the initial pair-wise comparisons,
which is not always straightforward. This is mainly because
the transitivity of coreference can not be always enforced.
For example, if the similarity comparisons suggest that A
and B are similar, as well as A and C, but B and C
cannot be the same, due to gender or size contradictions, then
the final clustering becomes challenging. Although multiple
approximate solutions to this problem are proposed [27],
Ng [25] in his survey paper argues that the mention-pair model
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remains fundamentally weak. Various alternative approaches
have thusly been proposed to improve on the classical mention-
pair model [21], [24], [28].

There have also been a few graph-based approaches to
coreference resolution. These approaches do not require sepa-
rate classification and clustering steps. Instead, they construct a
graph in which nodes represent the mentions, and links repre-
sent the relation between pairs of mentions. Several interesting
ideas have been proposed for how to compute the weight on
the links and how to put it in use. In [4], [3], [20], for example,
there can be multiple links (of different types) between nodes,
thus, a hyper graph is constructed. Weights on the links are
then learned through a training phase. Then the hypergraph
is partitioned into multiple sub-hypergraphs by means of a
spectral graph clustering or greedy partitioning. Finally, all the
mentioned of a partitioned component are considered corefer-
ent. In [11], the betweenness centrality of the nodes that may
be coreferent is computed. Similarly, [37] investigated graph
attributes and links to rank the similar nodes of the graph.
Another interesting graph-based approach is recently proposed
in [13]. First, they transform an unweighted undirected cyclic
entity graph, into an unweighted, directed, acyclic one. Then,
they find the maximal quasi-strongly connected components of
the transformed graph. Finally, all the mentions that belong to
the same component are considered to be coreferent. The main
problem with these solutions is that they are computationally
very expensive, thus, it is impractical to use them in web scale.

An existing work that can be applied on very large datasets
is [34], which transforms the problem to a Markov chain
Monte carlo (MCMC) based inference. Mentions and entities
are random variables. Each mention takes an entity as its value,
and each entity takes a set of mentions as its value. To scale up
the MCMC-based inference, initially the entities are distributed
among multiple machines. Then, independent MCMC chains
are computed on each machine using only the local merge
proposals. After a certain number of rounds, the entities are
redistributed among machines to enable merge proposals for
entities that were previously on different machines. Another
scalable solution, proposed in [29], is a streaming algorithm for
coreference resolution, which can work on very large datasets.
The closest work to ours is perhaps by Jurgen et al. [14], which
also applies a community detection algorithm on a collocation
graph. As opposed to our node-centric solution, [14] uses an
agglomerative algorithm for community detection, which could
become expensive for big graphs.

B. Related work in Graph Clustering

Graph clustering problem is to divide nodes of a graph
into multiple components, such that the number of edges that
cross different components is minimum. This is also known
as the min-cut problem, because it identifies the minimal set
of edges that can be cut in order to split the graph. Two
main graph clustering problems are known: (a) balanced graph
partitioning, and (b) community detection. For balanced graph
partitioning the number of desired components is given in
advance, and there is a constraint that the components should
hold roughly equal number of nodes [15], [32], [26]. However,
in the community detection problem neither the size nor the
number of components are known. Instead the task is to
cluster the nodes into groups or communities, which are tightly

connected together, but very sparsely connected to the rest of
the nodes. Despite their differences, the two problems are not
conceptually different, as they both strive to find the min-cut of
the graph. Thus, many ideas and techniques can be applied to
both of them. Here, we give an overview of the main category
of graph clustering solutions. For more detailed information
please refer to the existing surveys by Fortunato et al. [7] and
Schaeffer et al. [33].

1) Spectral Clustering: Spectral clustering consists of a
transformation of the initial set of nodes/edges into a set of
points in the space, whose coordinates are the element of
the eigenvectors of the graph adjacency matrix. The set of
points, can then be clustered by using well-known techniques,
such as K-means clustering [17]. The very nice property of
spectral graph theory is that we can acquire a lot of topological
knowledge about the graph just by looking at its eigenvectors.
For example, we can discover if the graph is connected, or even
how many connected components exist in a graph. Similarly,
we can find the number of existing communities in a graph.
Nevertheless, the problem is computing the eigenvectors of a
large graph is very costly if not impossible. We, therefore, has
to look for alternative approaches to clustering, in order to
process very large graphs.

2) Hierarchical Clustering: Hierarchical clustering ap-
proaches also aim at dividing the graph into tightly connected
groups of node, where often the number and size of the
groups are unknown. These techniques, therefore, allow for
clustering with different resolutions, i.e., with a low resolution
clustering the graph is partitioned into few big components,
while we can zoom into these coarse components and find
components of a finer resolution. As a result, a hierarchy
of the clusters will be computed. These solutions can be
classified into two main categories: agglomerative algorithms,
as in [12], and divisive algorithms, as in [9]. In the first set
of algorithms, we start by singles nodes in each cluster, and
merge clusters that have many neighbors in common, whereas
in the second set, we take the opposite approach. We start from
one cluster that holds all the nodes, and then iteratively remove
the edges to break the clusters into smaller pieces. Hierarchical
algorithms are nice for they enable us to acquire clusters of
any desired resolution. However, not all the graphs have a
hierarchical topology, in which case zooming in and out of
a cluster does not necessarily identifies meaningful clusters.
Also, these algorithms are computationally expensive , thus,
are impractical for big graphs.

3) Diffusion Based Clustering: The well-known theorem
of Ford and Fulkerson [6] states that the min-cut between any
two vertices s and t of a graph, i.e., any minimal set of edges
whose deletion would topologically separate s from t, carries
the maximum flow that can be transformed from s to t across
the graph. The duality of the min-cut/max-flow problem has
indeed inspired a class of diffusion based algorithm, including
our work in this paper, for graph partitioning and community
detection. There are already several solutions to detect max-
flow in graphs, including [5], [22], and DiDic [8]. DiDic uses
a statistical model to diffuse flows of different colors in a
graph, while it biases the flows towards well-shaped regions.
The problem is we need to give it the maximum number of
communities in advance, and if this number is unnecessarily
large, it can slow down the process significantly. Also, since
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the initialization is random, each run of the algorithm on the
same graph might result in a drastically different result. In
effect, the final result is more affected by the initialization
scheme rather than the graph topology.

VI. CONCLUSIONS

In this paper, we introduced a graph-based approach to
coreference resolution. We showed that by using a graph
representation of the documents and their context, and applying
a community detection algorithm we can speed up the task of
coreference resolution by a very large degree. More precisely,
the complexity of our algorithm is O(N×d×rounds), where
d is the average node degree and rounds is the number
of rounds before convergence. Moreover, the convergence
time of the algorithm highly depends on the topology of the
constructed graph and is proportional to the diameter of the
largest connected component. The accuracy of coreference
resolution could also be improved at the same time, because
we are able to search beyond only pair-wise comparisons. The
graph that we construct enables us to discover any existing
closeness/similarity between any subset of documents. Thus,
we can explore the solution space more freely and more
smartly.
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