
Brief Announcement: Giving Future(s) to Transactional Memory
Jingna Zeng

KTH Royal Institute of Technology
University of Lisbon

Seif Haridi
KTH Royal Institute of Technology

Shady Issa, Paolo Romano,
Luís Rodrigues

INESC-ID/University of Lisbon

ABSTRACT
This paper extends the Transactional Memory (TM) paradigm by
proposing a new powerful abstraction, the transactional future.
Transactional futures, as the name suggests, combine TM with
futures, by allowing programmers to exploit intra-transaction par-
allelism via the abstraction of futures, while delegating to TM the
complexity of regulating concurrent access to shared data. Themain
contribution of this paper is the definition of a set of semantics
for transactional futures that explore different trade-offs between
simplicity and efficiency.

CCS CONCEPTS
•Theory of computation→Abstraction; •Computingmethod-
ologies → Parallel algorithms.

KEYWORDS
Transactional Memory; Parallel Programming; Futures; Synchro-
nization; Concurrency Control
ACM Reference Format:
Jingna Zeng, Seif Haridi, and Shady Issa, Paolo Romano, Luís Rodrigues.
2020. Brief Announcement: Giving Future(s) to Transactional Memory. In
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3350755.3400220

1 INTRODUCTION
Transactional Memory (TM) [9, 14] is an attractive paradigm for
parallel programming that relies on the familiar abstraction of
transaction to shift the burden of coordinating concurrent access to
shared memory from programmers to the run-time environment,
possibly leveraging ad hoc hardware supports [3–5, 7, 10–13, 16,
17, 20].

This work aims at filling an important gap in the literature on
TM by investigating how to extend the TM model to support a pop-
ular abstraction for parallel programming, namely futures (a.k.a.,
promises [8]). In fact, despite the wide body of research that ad-
dressed various aspects of the TM domain (e.g., supporting intra-
transaction using parallel nesting [1][6][15][2]), the problem of
how to integrate the abstractions of futures and TM remains largely
unaddressed at current date, to the best of our knowledge.

We pursue this goal by introducing the abstraction of transac-
tional futures, i.e., transactions that execute wrapped within futures

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400220

and that are spawned and evaluated by other transactions or trans-
actional futures.

We show that due to the ability of futures to generate paral-
lel computations with complex dependencies, there exist several
plausible (i.e., intuitive) alternatives for defining the isolation and
atomicity semantics of transactional futures. Based on these con-
siderations, we propose four different semantics that regulate two
different dimensions: the degree of atomicity between futures and
continuations, and their admitted serialization orders. These alter-
native semantics explore different trade-offs between ease of use
(simplicity of reasoning on the equivalent sequential histories), and
efficiency (ability to avoid aborts or stalls by enforcing different
constraints on the serialization order of transactional futures).

The semantics proposed in this paper extend the ones proposed
in our previous work [18], where we proposed a simplistic model
for what concerns the serialization order of transactional futures
(called strongly ordered in this paper) that imposes the serialization
of futures at their submission point. In this paper, we investigate
multiple definitions of the isolation and atomicity semantics of
transactional futures, which raise interesting opportunities as well
as subtle issues. In the full version of this paper [19], we also present
a graph-based formalization and software-based implementation
of the semantics herein proposed.

2 SEMANTICS OF TRANSACTIONAL
FUTURES

As a first step to reason on the integration of the future abstraction
in the TM paradigm, we first define the assumed model of execution
of transaction and futures. We consider a set TH = {𝑇ℎ1, . . . ,𝑇ℎ𝑛}
of threads which can communicate by reading and writing a set of
shared variables 𝑉 .

In the conventional transactional model, transactions start by
issuing a begin operation, which can be followed by a sequence of
read and write operations, and are finally completed by either a
commit or abort operation. To integrate futures and transactions,
we allow the latter to return values: in fact, the future abstraction
supports the execution of tasks that generate results, and we in-
tend to encapsulate the operations executed by a future within a
transaction.

Further, we allow transactions to issue, besides reads and writes,
two additional operations: submit and evaluate. These two primi-
tives allow, respectively, for submitting and evaluating a transac-
tional future, i.e., a transaction encapsulated in a future that can
run in parallel with the thread that submitted it. We assume, for
simplicity, that future submission and evaluation can only be done
within the context of a transaction.

The submit operation takes as input a transaction 𝑇 , activates
a parallel thread in which 𝑇 will be executed, and returns a future
object 𝑓 ∈ F . The returned future object 𝑓 can then be passed

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

587

https://doi.org/10.1145/3350755.3400220
https://doi.org/10.1145/3350755.3400220

as an input parameter to the evaluate operation, which eventu-
ally returns the value generated by the transaction. As in typical
TM environments, we assume that if a transaction aborts due to
contention, it is re-executed automatically. This implies that if an
evaluate primitive associated with transaction𝑇 returns, then𝑇 has
either been committed (possibly after several aborts due to conflicts
and subsequent re-executions) or 𝑇 has aborted due to an explicit
decision of the program to abort 𝑇 (via the abort operation).

Transactions activated by threads that do not run in the context
of a future are denoted top-level transactions. It is easy to see that
this transaction execution model supports an arbitrary deep nesting
of calls to transactional futures in a top-level transaction. Also, a
transactional future 𝑇𝐹 can be uniquely associated with one top-
level transaction 𝑇𝑠 within whose context 𝑇𝐹 is submitted, and
with one or more top-level transaction 𝑇𝑒 within whose context
𝑇𝐹 is evaluated. Importantly, note that our model does not require
transactional futures to be evaluated by the same transaction/thread
that submit them, i.e. possibly 𝑇𝑠 ≠ 𝑇𝑒 .

2.1 A Basic Example
Figure 1a illustrates a simple example that allows us to set the
ground in our search for plausible semantics of execution of trans-
actional futures. The top-level transaction 𝑇 first writes value 1 to
variable 𝑋 and then submits a transactional future 𝑇𝐹 , which reads
and increments 𝑋 by 1. In parallel with𝑇𝐹 , i.e., before evaluating it,
transaction 𝑇 set the value of 𝑋 to 10. Finally, after evaluating 𝑇𝐹 ,
𝑇 reads 𝑋 and writes its value to variable 𝑌 .

Given the simplicity of this scenario, it is intuitive to define
both which sets of operations should be executed atomically and
which are their admissible serialization orders: the read and write
operations of 𝑇𝐹 should all be serialized either before or after the
operations of 𝑇 that follow the creation of 𝑇𝐹 and precede 𝑇𝐹 ’s
evaluation. We call this set of operations of 𝑇 the continuation of
𝑇𝐹 , and denote it as C(𝑇𝐹).

We consider two different semantics regarding the plausible
serialization order of transactional futures and their continuations

• Weakly Ordered Transactional Futures (WO): A future and its
continuation should appear as executed atomically, i.e. the future
should be serialized before or after its continuation.

• Strongly Ordered Transactional Futures (SO): A future and its
continuation should appear as executed atomically with the future
serialized before its continuation.

The Figure 1a also depicts the execution interval of the commit
and evaluate operations of𝑇𝐹 (for simplicity all the other operations
are assumed instantaneous). In this example execution, the future
requests to commit in real time before the future is evaluated; the
return of the future’s commit operation is placed after the call to
evaluate, and before the latter operation returns. In general, though,
the timing of the call/return events of the commit and evaluate
operations of future vary.

Note that, if a future is evaluated before it completes its execution
or requests to commit, its evaluation will block until the future has
been successfully committed. This is analogous to what happens
when one attempts to evaluate a plain/non-transactional future
that has not completed executing. A related observation is that

the choice of WO vs SO semantics has important implications
on the definition of the upper bound of the execution interval
of the commit operation for a future. With SO semantics, in fact,
the serialization order of a future is defined prior to the future’s
activation. As such, whenever a SO future requests to commit (and
there are no previously spawned futures), it is immediately possible
to determine the outcome of the future, i.e., whether this can be
serialized upon its submission. As such, if the future in Figure 1a
were to abide by SO semantics, the return of its commit request
could be also placed before the call of its evaluate operation.

This is not always the case, though, with WO semantics. In fact,
whenever a WO future is serialized upon evaluation, the return call
of its commit operation must necessarily follow, in real time, the call
of its evaluate operation. Consider a case, such as the one illustrated
in Figure 1a, in which a WO future requests to commit before being
evaluated. Assume further that the underlying TM implementation
opts for serializing the future upon evaluation — e.g., because the
future wrote some data item that its continuation read without
observing the future’s write, thus, the continuation would have to
abort if the future had to be serialized upon submission. In such a
scenario, given that the future has not been evaluated yet, it would
be impossible at that point in time for any TM implementation to
determine whether the future can be committed or not.

Thus, if on the one hand WO semantics provide more flexibility
in defining the serialization points of a future, this flexibility comes
at a cost: in order for the future to be serialized upon evaluation, the
future’s commit request may have to be blocked for an arbitrarily
long time, i.e., up until the future is actually evaluated.

2.2 Escaping futures
We now focus on a specific type of executions that are allowed
by the assumed execution model of transactional futures, but that
cannot be supported with parallel nesting: escaping transactional
futures, i.e., transactional futures that are not evaluated by the same
transaction in which they are submitted.

We show an example of escaping futures in Figure 1b. Here, an
escaping transactional future is used as a complementary commu-
nication means (in addition to shared variables) by two distinct
top-level transactions. In this case, the top-level transaction 𝑇1 sub-
mits a future𝑇𝐹 . In𝑇𝐹 ’s continuation,𝑇1 writes the reference of the
future returned by submit(𝑇𝐹) to variable X, reads Y not observing
𝑇𝐹 ’s write and requests to commit. With WO semantic, it is possible
to serialize 𝑇𝐹 after 𝑇1. This allows the top-level transaction 𝑇1 to
commit without having to block waiting for 𝑇𝐹 to commit first1,
making the reference to𝑇𝐹 available to other top-level transactions
possibly executing on different threads, e.g., 𝑇2 in Figure 1b.

Globally Atomic Continuation. One may argue that by com-
municating the reference of 𝑇𝐹 via 𝑋 , a logical causality has been
established between the write operations to 𝑋 by 𝑇1 and the read
operation for𝑋 issued by𝑇2 before evaluating𝑇𝐹 . Despite spanning
two top-level transactions, these operations represent a chain of
causally related events that led to the evaluation of𝑇𝐹 . If they were,
in the light of this reasoning, considered as the continuation of 𝑇𝐹 ,

1This would be necessary if we assumed SO semantic for𝑇𝐹 . In this case, it cannot be
otherwise guaranteed that𝑇1 observes all the writes possibly issued by𝑇𝐹 unless𝑇𝐹
completes its execution.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

588

commit

evaluate

T

TF w(x,x+1)

w(x,10)

submit

w(x,1) w(y,x)

(a) A Simple Example of Transactional
Futures

T1

submit

evaluate

r(x) w(z,z1)

commit

w(x,f)

w(y,y1)

r(y)

r(z)TF

r(x) w(z,z2)
T2

(b) Escaping Transactional Future with GAC se-
mantic

T1

submit

evaluate

r(x) w(z,z1)

commit

w(x,f)

w(y,y1)

r(y)

r(z)TF

r(x) w(z,z2)T2

implicit

evaluate

(c) Escaping TF across with LAC semantic

Figure 1: Example executions of Transactional Futures.

then they should intuitively appear as an atomic block to 𝑇𝐹 . We
term this atomicity model Globally Atomic Continuation (GAC).

Locally Atomic Continuation. The above example could be eas-
ily generalized to include in the continuation of 𝑇𝐹 , after 𝑇1 and
before 𝑇2, an arbitrarily long chain of transactions propagating the
reference to 𝑇𝐹 to each other. As already discussed in Section 2.1,
though, this may lead to stretching the execution interval of 𝑇𝐹
arbitrarily, which may be undesirable for efficiency reasons.

This leads us to consider an alternative semantic, called Locally
Atomic Continuation (LAC), which limits the boundaries of a con-
tinuation to its spawning top-level transaction. With LAC semantic
any top-level transaction 𝑇 is requested, during its commit phase
to implicitly evaluate any escaping futures 𝐹 it spawned, either
directly or indirectly (i.e., 𝑇 triggered the spawning of a chain of
futures that led eventually to the submission of 𝐹). We call this eval-
uation “implicit”, since it is not requested explicitly by programmers
but is rather imposed by the considered atomicity semantic.

The LAC semantic ensures that a future is serialized within its
spawning top-level transaction. In fact, with LAC, a future that
escapes from its top-level transaction 𝑇 is serialized either upon
submission or (if WO semantic is used) upon its “implicit” evalua-
tion, i.e., as the last (sub-)transaction of 𝑇 right before 𝑇 ’s commit.

Figure 1c illustrates the LAC semantics for the same history of
Figure 1b: an implicit evaluation of𝑇𝐹 is added as the last operation
of its spawning top-level transaction 𝑇1. As a consequence, 𝑇𝐹 can
commit much earlier than if GAC semantics were considered. Note,
though, that this come at a cost for 𝑇1, which is now forced to wait
for 𝑇𝐹 ’s completion before being able to commit.

Figure 1c also shows an example of repeated evaluations of a
future, namely𝑇𝐹 , which is first implicitly evaluated by𝑇1 and then
(explicitly) evaluated by 𝑇2. The semantics we propose for repeated
evaluations of a future is that only the first evaluate determines the
serialization point of transactional futures (assuming WO). Further
evaluations just return the results the future produced during its
first evaluation. This definition follows the common sense that a
transaction is only committed (and, hence, serialized) once.

3 CONCLUSIONS
This work shed lights on the challenges of defining semantic models
capable of reconciling the future’s abstractionwith the transactional
memory paradigm. We showed that the key complexity lies in that
futures allow for defining complex concurrency patterns, for which
it is not how to define adequate isolation and atomicity guarantees.

We analyzed a set of concurrent programming patterns that can
be enabled via the future’s abstraction, and used these examples to
motivate a set of possible semantics for transactional futures that
explore different trade-offs between simplicity and efficiency.

REFERENCES
[1] Kunal Agrawal, Jeremy T Fineman, and Jim Sukha. 2008. Nested parallelism in

transactional memory. In PPoPP. 163–174.
[2] Woongki Baek and Christos Kozyrakis. 2009. NesTM: Implementing and Evalu-

ating Nested Parallelism in Software Transactional Memory. In PACT (Raleigh,
NC, USA).

[3] Dave Dice, Maurice Herlihy, and Alex Kogan. 2018. Improving Parallelism in
Hardware Transactional Memory. TACO 15, 1 (2018), 9:1–9:24. https://doi.org/
10.1145/3177962

[4] Dave Dice, Yossi Lev, Yujie Liu, Victor Luchangco, and Mark Moir. 2013. Using
hardware transactional memory to correct and simplify and readers-writer lock
algorithm. In PPoPP. 261–270.

[5] Nuno Diegues, Paolo Romano, and Luís E. T. Rodrigues. 2014. Virtues and
limitations of commodity hardware transactional memory. In PACT. 3–14.

[6] Ricardo Filipe and Joao Barreto. 2015. Nested Parallelism in Transactional Mem-
ory. In Transactional Memory. Foundations, Algorithms, Tools, and Applications.
Springer, 192–209.

[7] Vincent Gramoli and Rachid Guerraoui. 2011. Democratizing transactional
programming. In Middleware 2011. Springer, 1–19.

[8] Robert H Halstead Jr. 1985. Multilisp: A language for concurrent symbolic
computation. ACM TOPLAS 7, 4 (1985), 501–538.

[9] Maurice Herlihy and J Eliot B Moss. 1993. Transactional memory: Architectural
support for lock-free data structures. Vol. 21. ACM.

[10] Shady Issa, Pascal Felber, AlexanderMatveev, and Paolo Romano. 2019. Extending
hardware transactional memory capacity via rollback-only transactions and
suspend/resume. Distributed Computing (2019), 1–22.

[11] Yossi Lev, Mark Moir, and Dan Nussbaum. 2007. PhTM: Phased transactional
memory. InWorkshop on Transactional Computing (Transact).

[12] Victor Pankratius and Ali-Reza Adl-Tabatabai. 2011. A study of transactional
memory vs. locks in practice. In SPAA. 43–52.

[13] Christopher J Rossbach, Owen S Hofmann, and Emmett Witchel. 2010. Is trans-
actional programming actually easier?. In PPoPP. 47–56.

[14] Nir Shavit and Dan Touitou. 1997. Software transactional memory. Distributed
Computing 10, 2 (1997), 99–116.

[15] Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, Xinmin
Tian, and Ravi Narayanaswamy. 2009. NePalTM: design and implementation
of nested parallelism for transactional memory systems. In ECOOP. Springer,
123–147.

[16] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Rajwar. 2013. Perfor-
mance evaluation of Intel® transactional synchronization extensions for high-
performance computing. In SC. IEEE, 1–11.

[17] Pantea Zardoshti, Tingzhe Zhou, Pavithra Balaji, Michael L. Scott, and Michael F.
Spear. 2019. Simplifying Transactional Memory Support in C++. TACO 16, 3
(2019), 25:1–25:24.

[18] Jingna Zeng, Joao Barreto, Seif Haridi, Luís Rodrigues, and Paolo Romano. 2016.
The Future (s) of Transactional Memory. In ICPP. 442–451.

[19] Jingna Zeng, Shady Alaaeldin Issa, Seif Haridi, Luis Rodrigues, and Paolo Romano.
2019. Investigating the Semantics of Futures in Transactional Memory Systems.
Technical Report. INESC-ID, Lisbon, Portugal.

[20] Tingzhe Zhou, Pantea Zardoshti, and Michael F. Spear. 2017. Practical Experience
with Transactional Lock Elision. In ICPP. 81–90.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

589

https://doi.org/10.1145/3177962
https://doi.org/10.1145/3177962

	Abstract
	1 Introduction
	2 Semantics of Transactional Futures
	2.1 A Basic Example
	2.2 Escaping futures

	3 Conclusions
	References

