
JOINTLY LEARNABLE DATA AUGMENTATIONS FOR
SELF-SUPERVISED GNNS

A PREPRINT

Zekarias T. Kefato
KTH Royal Institute of Technology

Stockholm, Sweden
zekarias@kth.se

Sarunas Girdzijauskas
KTH Royal Institute of Technology

Stockholm, Sweden
sarunasg@kth.se

Hannes Stärk
Technical University of Munich

Munich, Germany
hannes.staerk@tum.de

August 25, 2021

ABSTRACT

Self-supervised Learning (SSL) aims at learning representations of objects without relying on manual
labeling. Recently, a number of SSL methods for graph representation learning have achieved
performance comparable to SOTA semi-supervised GNNs. A Siamese network, which relies on data
augmentation, is the popular architecture used in these methods. However, these methods rely on
heuristically crafted data augmentation techniques. Furthermore, they use either contrastive terms or
other tricks (e.g., asymmetry) to avoid trivial solutions that can occur in Siamese networks.
In this study, we propose, GRAPHSURGEON, a novel SSL method for GNNs with the following
features. First, instead of heuristics we propose a learnable data augmentation method that is jointly
learned with the embeddings by leveraging the inherent signal encoded in the graph. In addition, we
take advantage of the flexibility of the learnable data augmentation and introduce a new strategy that
augments in the embedding space, called post augmentation. This strategy has a significantly lower
memory overhead and run-time cost. Second, as it is difficult to sample truly contrastive terms, we
avoid explicit negative sampling. Third, instead of relying on engineering tricks, we use a scalable
constrained optimization objective motivated by Laplacian Eigenmaps to avoid trivial solutions.
To validate the practical use of GRAPHSURGEON, we perform empirical evaluation using 14 public
datasets across a number of domains and ranging from small to large scale graphs with hundreds
of millions of edges. Our finding shows that GRAPHSURGEON is comparable to six SOTA semi-
supervised and on par with five SOTA self-supervised baselines in node classification tasks. The
source code is available at https://github.com/zekarias-tilahun/graph-surgeon.

Keywords GNN, Self-Supervised Learning, Learnable Data Augmentation

1 Introduction

Owing to its comparable performance to semi-supervised learning, self-supervised learning (SSL) has been widely
adapted across a number of domains. In SSL, we seek to learn representations of objects (e.g. images and graphs)
without relying on manual labeling. A particular interest in this study is SSL for graph neural networks (GNN)
- SSL-GNN.

Earlier efforts in SSL concentrated on devising a pretext task and training a model to extract transferable features.
However, it is challenging to learn a generalized representation that is invariant to the pretext task and useful for a
downstream task Misra and van der Maaten (2019). As a result, a new framework based on a Siamese network Bromley
et al. (1993) has become the de facto standard, and current SOTA results are achieved using different flavors of such
networks Caron et al. (2020); Misra and van der Maaten (2019); He et al. (2019); Chen et al. (2020); Grill et al. (2020);
Caron et al. (2021); Zbontar et al. (2021); Kefato and Girdzijauskas (2021); Zhu et al. (2021); You et al. (2020); Hassani
and Ahmadi (2020); You et al. (2021).

ar
X

iv
:2

10
8.

10
42

0v
1

 [
cs

.L
G

]
 2

3
A

ug
 2

02
1

https://github.com/zekarias-tilahun/graph-surgeon

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

Self-supervised techniques using Siamese networks learn representations that benefit from data-augmentation (perturba-
tion) Zbontar et al. (2021), and devising suitable augmentation techniques is one of the main challenges. Although
there are well established data-augmentation techniques (e.g., for images), there are no standard techniques for other
modalities, such as text and graph data. As a result, existing methods depend on different heuristics and/or trial and
error You et al. (2021).

In a Siamese framework, there are two networks, commonly referred to as a student and teacher network, and their
inputs are differently augmented views of the same object. Learning is carried out by maximizing the agreement
between the outputs of the two networks. However, a contrastive term (negative samples) is required to prevent a trivial
solution (e.g., constant output, collapse) Chen et al. (2020); Zhu et al. (2020); He et al. (2019); Sun et al. (2021); Zhu
et al. (2021); Hassani and Ahmadi (2020); You et al. (2021); Caron et al. (2020). On the other hand, because it is usually
difficult to sample truly contrastive (negative) terms, techniques were proposed without the need for explicit negative
samples. These methods rely on engineering tricks (e.g., asymmetry) to avoid a trivial solution Grill et al. (2020);
Chen and He (2020); Caron et al. (2021); Kefato and Girdzijauskas (2021); Thakoor et al. (2021). Three strategies are
commonly used, which are asymmetry in the (1) architecture (2) weights, and (3) update rules Grill et al. (2020).

In this study, we propose an SSL model for GNNs based on the Siamese architecture called GRAPHSURGEON (self-
supervised GNN that jointly learns to augment). Unlike most existing methods, GRAPHSURGEON requires neither
data augmentation using heuristics nor explicit negative samples. We design an SSL architecture in such a way that data
augmentation is jointly learned with the graph representation. Moreover, by using a principled constrained optimization
objective, we avoid the need for explicit negative samples.

To augment a given node v, we simply use two augmentation heads v1 = fθ1(v) and v2 = fθ2(v), parameterized by
two separate sets of weights θ1 and θ2, which produce two views v1 and v2 of v. For example, fθ1(v) and fθ2(v) could
be simple MLP heads. v1 and v2 are fed to a shared GNN, hθ(·), parameterized by a set of weights θ. Here, the key
idea is that the parameters of the augmentation heads, θ1 and θ2, are jointly learned with θ. Because the two networks
are symmetric and equivalent, we use the terms left and right, instead of student and teacher.

Furthermore, because of the flexibility of the learnable augmenters, we introduce an alternative new strategy called
post-augmentation. Post-augmentation applies augmentation in a latent space. That is, we first encode (e.g., using a
GNN, CNN, or Transformer) and augment the encoded representations. This is in contrast to the standard practice
which we refer to as pre-augmentation, where we first augment the input features and then encode them. Compared to
the pre-augmentation strategy, we show that post-augmentation significantly decreases memory use and computation
time. Fig. 1 shows the pre and post architectures. Note that post-augmentation is difficult, if not impossible, when using
predefined augmentation strategies.

GRAPHSURGEON is trained based on a loss function that draws inspiration from Laplacian Eigenmaps Belkin and
Niyogi (2003). Just like any Siamese network, it has a term to maximize the agreement between the outputs of the left
and right networks. To avoid trivial solutions, instead of engineering tricks, we use an orthonormality constraint similar
to Laplacian Eigenmaps. The constraint encourages positive pairs to be similar while preventing trivial solutions.

Finally, we perform an empirical evaluation using publicly available datasets and compare GRAPHSURGEON with strong
SOTA baselines on three types of node classification tasks. The results show that GRAPHSURGEON is comparable to
semi-supervised methods, on average just 2 percentage points away from the best performing ones. However, it is on
par with the SSL-GNN baselines.

Our contributions are summarised as follows:

• We propose a SSL-GNN called GRAPHSURGEON that jointly learns to embed and augment graph data.

• We introduce an alternative new augmentation strategy that happens in the latent space as opposed to the input
space and it leads to a significant improvement in resource usage, regarding GPU memory and run-time.

• GRAPHSURGEON learns meaningful representations based on a constrained optimization objective that has
theoretical motivation as opposed to engineering tricks to prevent trivial solutions.

• We carried out extensive experiments using 14 publicly available datasets ranging from small to large, spanning
a number of domains and we show that GRAPHSURGEON is comparable to six SOTA supervised GNNs and
on par with five SOTA SSL-GNN architectures.

To the best of our knowledge, this is the first attempt towards SSL-GNN that jointly learns data augmentation and also
does not require explicit contrastive terms. In addition, one can easily adopt the techniques for other domains, such as
CV.

2

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

laplacian_eigenmaps_loss laplacian_eigenmaps_loss

(A) Pre (B) Post

Figure 1: The architecture of GRAPHSURGEON, (A) first
generates two augmented views of an input signal from two
learned functions fθ1 and fθ2 and then passes them to a
shared GNN encoder hθ. Meanwhile, (B) first encodes the
input signal and passes it to the two learned augmenters, fθ1
and fθ2 .

2 Related Work

We briefly discuss SSL-GNN methods based on Siamese networks in terms of their data-augmentation strategies and
their architecture choices. Then we give an overview of GNNs.

Data Augmentation Although there are well-established data augmentation techniques in the CV domain, this is not
the case for the graph domain Hassani and Ahmadi (2020); You et al. (2021). Different heuristics, based on high-order
networks, perturbation of topology and attributes have been proposed Veličković et al. (2018b); Hassani and Ahmadi
(2020); You et al. (2020); Kefato and Girdzijauskas (2021); Bielak et al. (2021). It is not clear what the relative benefit
of these augmentation strategies is, and little is known regarding the relevance of each strategy with respect to different
downstream tasks. There are also conflicting observations regarding the composition of more than two augmentation
strategies Hassani and Ahmadi (2020); You et al. (2021). A recent study You et al. (2021) proposes a different strategy
that dynamically chooses augmentation techniques while learning the graph representation through a joint optimization
objective.

Our study differs from this line of research, first as there are no predefined data augmentations whatsoever, and second,
the augmentation is jointly learned (not chosen) with the graph representation.

Architectures The key difference between existing architectures arises from the need to prevent trivial solutions. To
this end, existing studies Veličković et al. (2018b); Hassani and Ahmadi (2020); You et al. (2020); Zhu et al. (2021); You
et al. (2021); Sun et al. (2021); Wang et al. (2021); Zhu et al. (2020) often rely on contrastive architectures. However,
as sampling truly contrastive terms is a difficult task, other studies have used asymmetric architectures to prevent trivial
solutions. Originally proposed for CV Grill et al. (2020); Chen and He (2020), asymmetric methods Thakoor et al.
(2021); Kefato and Girdzijauskas (2021); Caron et al. (2021) have empirically shown that having different student and
teacher networks and a stop gradient operation is sufficient to prevent collapse. Though there are three possibilities for
asymmetry, not all of them are necessary to prevent trivial solutions Chen and He (2020); Caron et al. (2021)

In a similar line of research, a recent study Zbontar et al. (2021); Bielak et al. (2021) has introduced the notion
of redundancy reduction to prevent collapse without requiring the asymmetry trick. Our study advocates a similar
notion as Zbontar et al. (2021); Bardes et al. (2021), in the sense that it has no explicit contrastive terms and does
not use the asymmetry trick. On the other hand, we maximize agreement between positive pairs (as opposed to
redundancy reduction), and to avoid collapse we capitalize on a constrained optimization objective motivated by
Laplacian Eigenmaps Belkin and Niyogi (2003).

Graph Neural Network (GNN) Because there is a plethora of GNN architectures, our discussion focuses on a brief
description of the essentials of GNNs. Unlike previous neural network architectures, such as RNNs and CNNs, GNNs
are highly flexible in terms of the type of data structure they can accommodate. The GNN formulation allows us to learn
representations of objects for a multitude of data structure, such as grids, graphs, groups, geodesics and gauges Bronstein
et al. (2021); Hamilton (2020). Contrary to the rigid computational graphs of RNN and CNN, in a GNN it is the input
data that determines the computation graph. A GNN can be viewed as a message passing framework Gilmer et al.
(2017), where the messages are vectors that are updated by a neural network head Hamilton (2020), which is commonly
shared by all nodes. The propagation rule for the “vanilla" GNN (GCN) Kipf and Welling (2017) is defined as

X(l+1) = σ(ÃX(l)W (l)) (1)

3

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

where σ is an activation function, e.g., ReLU, Ã is a symmetrically normalized adjacency matrix, X is node feature
matrix (X(0) = X), X(l) is the node feature at the lth layer, and W (l) is the weight of the lth layer.

Because of the limitations of the above GNN model, such as scalability and oversmoothing, several extensions have
been proposed Hamilton et al. (2018); Chiang et al. (2019); Zeng et al. (2020); Wu et al. (2019); Chen et al. (2018); Xu
et al. (2018); Chen et al. (2019); Zhou et al. (2020); Oono and Suzuki (2021); Bojchevski et al. (2020); Gilmer et al.
(2017). Of particular interest to this study are architectures for large scale graphs. The popular ones are neighborhood
sampling Hamilton et al. (2018); Chen et al. (2018) and subgraph sampling Chiang et al. (2019); Zeng et al. (2020).
Instead of a full-batch training, which is used in the “vanilla" architecture, a neighborhood (layer) sampling uses a
sampled set of neighbors for message passing. On the other hand, subgraph sampling techniques in a nutshell build
sub-graphs as batches and apply a full-batch GNN over subgraphs (using clustering Chiang et al. (2019) or subgraph
sampling Zeng et al. (2020)).

3 GRAPHSURGEON

We consider an undirected graph G with a set of nodes V and edges E, where N = |V | and M = |E|. The adjacency
matrix representation of G is given by A ∈ [0, 1]N×N ; and Ã = D1/2(A + IN)D1/2 denotes the symmetrically
normalized adjacency matrix. Where Di,i =

∑
jAi,j + 1 is the degree matrix and IN is and Identity matrix of N

diagonal entries. Each node u is associated with an attribute signal xu ∈ RF , and the set of signals for all the nodes in
the graph is given by X ∈ RN×F .

Though the proposed method is agnostic to the type of GNN architecture, we assume a kind of GNN, parameterized
by θ = {W (l) ∈ RFl−1×Fl : l = 1, . . . , L} is given. For example, the GCN model by Kipf and Welling Kipf and
Welling (2017) with the propagation rule in Eq. 1. Hence, we consider a generic L–layer message passing GNN, hθ,
parameterized by θ. Similar to Eq. 1, at every layer l in hθ, each node propagates messages to its neighbors using a
particular materialization of G, e.g., Ã. To add expressivity, the propagation is followed by a linear transformation
using W (l) and then a non-linearity using ReLU.

Given a GNN hθ, a certain materialization of G, and a node feature matrix X , we propose, GRAPHSURGEON, a
novel SSL-GNN model based on the Siamese network Bromley et al. (1993). The overview of the model is shown in
Fig. 1. For ease of discussion, we consider A as the materialization of G. We express the GNN encoder using two
equivalent formulations, hθ(A,X) and hθ(G), interchangeably.

3.1 Learning Data Augmentation

The core component behind SSL models based on a Siamese network is data augmentation, without it, such models
have poor empirical performance Zhu et al. (2020). However, existing augmentation strategies are often based on
heuristics and/or trial and error You et al. (2021). That is, given a graph G, two augmented views G1 = t1(G) and
G2 = t2(G) are generated by applying augmentation techniques t1 ∼ T and t2 ∼ T , sampled from a set of predefined
techniques, T .

Automatically learning augmentations has not been well explored yet. In this study, we propose a simple yet novel data
augmentation technique that is learned based on the signal encoded in the graph. Therefore, we replace t1 and t2, with
trainable functions fθ1 and fθ2 parametrized by θ1 and θ2.

One can model f to learn either a different view of the topology A, or attribute signal X . In this study, we address the
latter, and the former will be covered in future work. Therefore, we model f as an MLP, i.e., two augmented views are
generated as X1 = fθ1(X), X2 = fθ2(X), where X1 ∈ RN×D and X2 ∈ RN×D and θ1 = {W (l)

1 : l = 1, . . . L1}
and θ2 = {W (l)

2 : l = 1, . . . L2}, where L1 and L2 are the number of layers of fθ1 and fθ2 . In order for the graph
signal to govern the learned augmentations X1 and X2, the key design choice in GRAPHSURGEON is to jointly learn
θ1 and θ2 with θ.

A standard SSL-GNN technique follows a pre-augmentation architecture (in short, pre), i.e. first the input is augmented
and then fed to a GNN encoder, Fig 1 (A). Our design, however, gives us the flexibility to change the order of
augmentation to post-augmentation (in short, post), such that we first encode and then augment, Fig. 1 (B). The post
architecture is motivated by efficiency in terms of run time and memory footprint.

While both architectures have the same number of parameters, post requires less computation time and memory during
training. This is the case since with pre, the GNN encoder processes two separate representations for each node, leading
to twice as many computations for the encoder. In post, the encoder only processes one representation for each node

4

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

and the augmentation happens afterwards. With the GNN encoder making up the largest part of the architecture, this
means that pre needs almost two times more resources than post.

3.2 Joint Training of the Parameters

The following discussion assumes the pre-augmentation architecture. The high-level overview for the training function
of GRAPHSURGEON is given in Listing 1. GRAPHSURGEON first generates augmented viewsG1 = (A,X1) = fθ1(G)
and G2 = (A,X2) = fθ2(G), f_1(data.x) and f_2(data.x) in the pseudocode. Then it encodes the views
using a shared GNN, hθ, to generate the corresponding latent representations Z1 = hθ(G1) and Z2 = hθ(G2)
(h(data.adj, x1) and h(data.adj, x2) in the listing).

Our goal in an SSL-GNN framework is to maximize the agreement between these two representations. To this end,
we closely follow Laplacian Eigenmaps Belkin and Niyogi (2003) and minimize the mean squared error between the
normalized representations (unit vectors) of two data points. Though in Laplacian Eigenmaps the two data points
correspond to different objects (e.g., two different nodes, images), in our case, these are just the unit embedding vectors
of the two augmented views, which are Z̄1 and Z̄2 (z1_unit and z2_unit in the pseudocode). Therefore, we define
the objective based on these unit vectors as:

Lθ = ||Z̄1 − Z̄2||2F (2)

However, Eq. 2 admits a trivial solution, that is, collapse into a single point or a subspace Belkin and Niyogi (2003).
For this reason, we modify E.q. 2 and incorporate an orthonormality constraint inspired by the Laplacian Eigenmaps.
Moreover, we want to jointly optimize the parameters of the augmenters. To achieve these goals we update E.q. 2 and
formulate it as a constrained optimization objective as in Eq. 3.

Lθ,θ1,θ2 = ||Z̄1 − Z̄2||2F (3)

s.t. Z̄1Z̄1
T

= IN and Z̄2Z̄2
T

= IN

Eq. 3 encourages positive pairs across Z̄1 and Z̄2 to be similar to each other, and the orthonormality constraint ensures
that each row in Z̄1 or Z̄2 is similar to itself and orthonormal to other rows. Consequently, a trivial solution is
avoided Belkin and Niyogi (2003). As stated earlier, existing methods often rely on contrastive terms or the asymmetry
trick to achieve this.

By using the Lagrangian, we can relax the constrained optimization problem using Eq. 4, to obtain a regularized
objective which we call Laplacian Eigenmaps loss

Lθ,θ1,θ2 = ||Z̄1 − Z̄2||2F + γ
(
||Z̄1Z̄1

T − IN ||F + ||Z̄2Z̄2
T − IN ||F

)
(4)

Improved objective

Although E.q. 4 addresses the aforementioned concerns, the matrix multiplications, Z̄1Z̄1
T and Z̄2Z̄2

T , produce
N × N dense matrices. This is not desirable for full-batch GNNs, since storing the resulting matrix in a GPU
memory is not feasible. For this reason, we improve the regularization by making a simple change and replacing the
row orthonormality regularization with column orthogonality regularization. That is, replacing Z̄1Z̄1

T − IN with
Z̄1

T
Z̄1 − IFL

and Z̄2Z̄2
T − IN with Z̄1

T
Z̄1 − IFL

. Since FL � N , is usually in the orders of hundreds, we can
easily store an FL × FL matrix in the GPU’s memory.

Finally, when training GRAPHSURGEON, gradients are back propagated on both the left and right networks. As a result,
all the parameters are updated according to the loss incurred with respect to the signal from the graph. This in turn,
allows the parameters of both the encoder, hθ, and the augmenters, fθ1 and fθ2 , to be governed by the graph signal. The
fact that we have jointly trainable augmenters gives us the flexibility to use Fig. 1 (A) and (B) without compromising
the qualitative performance. This is difficult, if not impossible, when using predefined augmentation techniques.

3.3 Scalability

The flexibility of GRAPHSURGEON’s architecture allows us to seamlessly integrate it into virtually any kind of GNN
architecture. For large-scale graphs with hundreds of millions of edges, one can integrate GRAPHSURGEON with
existing methods for large-scale graphs. For example, with methods based on neighborhood (layer) sampling Hamilton
et al. (2018) and subgraph sampling Chiang et al. (2019); Zeng et al. (2020). For small graphs, we use full-batch
GCN Kipf and Welling (2017), while for large-scale graphs we use neighborhood sampling unless stated otherwise.

5

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

h: GNN Encoder
f_1: First augmenter
f_2: Second augmenter
gamma: weight for the regularization
B: Number of nodes in a batch
D: Number of features after augmentation
F_l: The final size of the embedding dimension

for data in loader:
data contains the graph data, that is, adj: a sparse adjacency
matrix and x: the node features. It could be a full-batch data
or a block-diagonal of b batches of subgraphs with the
corresponding node features.

if pre_augment:
data.x.shape = BxF
data.adj.shape = BxB
x1 = f_1(data.x) # x1.shape = BxD
x2 = f_2(data.x) # x2.shape = BxD
z1 = h(data.adj, x1) # z1.shape = BxF_l
z2 = h(data.adj, x2) # z2.shape = BxF_l

else:
z = h(data.adj, data.x) # z.shape = BxD
z1 = f_1(z) # z1.shape = BxF_l
z2 = f_2(z) # z2.shape = BxF_l

Transforming embedding vectors to unit vectors
z1_unit = torch.nn.functional.normalize(z1, dim=1, p=2)
z2_unit = torch.nn.functional.normalize(z2, dim=1, p=2)

mse = mse_loss(z1_unit, z2_unit) # Equation 2
if use_improved_loss:

I = torch.eye(F_l)
constraint = (

(z1_unit.t().matmul(z1_unit) - I).norm(p='fro') +
(z2_unit.t().matmul(z2_unit) - I).norm(p='fro')

) # Column orthonormality constraint
else:

I = torch.eye(B)
constraint = (

(z1_unit.matmul(z1_unit.t()) - I).norm(p='fro') +
(z2_unit.matmul(z2_unit.t()) - I).norm(p='fro')

) # Row orthonormality constraint

optimizer.zero_grad()
loss = mse + gamma * constraint # Equation 4
loss.backward()
optimizer.step()

Listing 1: A PyTorch and PyTorch Geometric based pseudo code for training GRAPHSURGEON

6

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

Dataset N M F C Task
Cora Full 19,793 126,842 8,710 70 MCC
DBLP 17,716 105,734 1,639 4 MCC
PubMed 19,717 88,648 500 3 MCC
Physics 34,493 495,924 8,415 5 MCC
CS 18,333 163,788 6,805 15 MCC
Computers 13,752 491,722 467 10 MCC
Photo 7,650 238,162 745 8 MCC
Facebook 22,470 342,004 128 4 MCC
Flickr 89,250 899,756 500 7 MCC
GitHub 37,700 578,006 128 2 BC
WikiCS 11,701 297,110 300 10 MCC
Actor 7,600 30,019 932 5 MCC

Yelp 716,847 13,954,819 300 100 MLC
Reddit 232,965 114,615,892 602 41 MCC

Table 1: Summary of the datasets, and N = |V |,
M = |E|, F is the number of features, and C
is the number of classes. BC, MCC and MLC
represent binary, multi-class and multi-label clas-
sification, respectively

4 Experiments

We validate the practical use of GRAPHSURGEON using 14 publicly available datasets, ranging from small to large-scale
graphs. All of the datasets are collected from PyTorch Geometric (PyG) 1, and grouped as

• Citation Networks (Cora, DBLP, and PubMed): Paper to paper citation networks, and we classify papers into
different subjects Hamilton et al. (2018).

• Co-Author Networks (Computer Science (CS) an Physics): Author collaboration network from Microsoft
Academic Graph, and the task is to predict the active field of authors Shchur et al. (2019).

• Co-Purchased Products Network (Computers and Photo): Co-purchased products from the respective categories
on Amazon, and the task is to predict the refined categories Shchur et al. (2019).

• Wikipedia (Actor and WikiCS): WikiCS contains Wikipedia hyperlinks between Computer Science articles,
and we classify articles into branches of CS Shchur et al. (2019), and Actor contains actors co-occurrence
on the same Wikipedia article and we classify actors into groups based word of actors’ Wikipedia Pei et al.
(2020).

• Social (Facebook, Flickr, GitHub, Reddit, and Yelp): Facebook contains a page to page graph of verified
Facebook sites, and we want to classify pages into their categories Rozemberczki et al. (2021). Flickr contains
a network of images based on common properties (e.g., geo-location) along with their description, and the task
is to predict a unique tag of an image Zeng et al. (2020). GitHub contains the social network of developers,
and we want to classify developers as web or machine learning developers Rozemberczki et al. (2021). Yelp is
also the social network of Yelp users, and we predict business categories each user has reviewed. For Reddit,
we predict the subreddits (communities) of user posts Hamilton et al. (2018); Zeng et al. (2020).

A brief summary of the datasets is provided in Table 1. We also group them into two, as large (Yelp and Reddit) and
small (the rest).

We compare GRAPHSURGEON against 11 state-of-the-art baselines grouped into two

• Semi-Supervised: Six of the baselines are methods that use a fraction of the node labels during training,
three of which (GCN Kipf and Welling (2017), GAT Veličković et al. (2018a), GRAPHSAGE Hamilton
et al. (2018)) are used for small and medium-size graphs and the rest (CLUSTERGCN Chiang et al. (2019),
GRAPHSAINT Zeng et al. (2020), and PPRGO Bojchevski et al. (2020)) for large-scale graphs.

• Self-supervised: There are five methods under this group, three of which (DGI Veličković et al. (2018b),
MVGRL Hassani and Ahmadi (2020), and GCA Zhu et al. (2021)) use a contrastive architecture to prevent
a trivial solution and the other two SELFGNN Kefato and Girdzijauskas (2021) and BGRL Thakoor et al.
(2021) use asymmetry. Because these two techniques extend the same method, BYOL Grill et al. (2020), for
visual representation to graph representation and use the same code base, we present them as one.

For GCN, GAT, GRAPHSAGE, CLUSTERGCN, GRAPHSAINT, and DGI we use the implementation from PyG. For
the rest we use the official implementation provided by the authors.

1https://pytorch-geometric.readthedocs.io/en/latest/index.html

7

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

4.1 Experimental Protocol

For all the datasets we have three splits, training, validation and test. For some of them, we use the splits provided by
PyTorch Geometric, and for the rest, we randomly split them into 5% training, 15% validation and 80% test sets. We
tune the hyperparameters of all the algorithms using Bayesian optimization 2, however for a fair comparison, we fix the
representation dimension to 128. In addition, we run all the models for 500 epochs and take the epoch with the best
validation score.

We train the semi-supervised methods using the training split and tune their hyperparaters using the validation set.
Finally, we use the test set to infer the labels and report their performance. For the self-supervised methods, we train
them without any label and tune them using the validation set. Following standard practice, they are evaluated under
the linear protocol. This means that we freeze the models and add a logistic regression (linear) classifier on top. The
linear classifier is trained using only the training split for 100 and 500 epochs, for small and large datasets, respectively.
Similar to the semi-supervised setting, we use the test set to simply predict the labels and report prediction quality.

We have three types of node classification tasks, which are binary, multi-class, and multi-label classifications. Similar
to existing studies, for the binary and multi-class tasks, we use accuracy, and for the multi-label, the Area Under the
Receiver Operating Characteristic Curve (ROC-AUC).

Unless a different setting is stated, we assume the aforementioned protocol.

4.2 Results

Datasets
Algorithms

Semi-Supervised Contrastive Asymmetric GRAPHSURGEON
GCN GAT GRAPHSAGE DGI MVGRL GCA SELFGNN/

BGRL
Cora 60.1±.001 58.27±.003 57.45±.003 50.66±.001 39.42±.193 37.64±.014 54.61±.135 56.33±.07
DBLP 82.7±.002 82.88±.002 81.39±.005 78.87±.002 69.2±.052 81.16±.007 81.32±.071 81.48±.09
PubMed 85.62±.001 84.98±.002 84.73±.001 84.28±.001 77.99±.315 82.76±.005 84.6±.076 84.94±.091
Physics 95.4±.001 95.02±.002 † 94.92±.001 91.18±.024 † 95.11±.07 95.11±0.025
CS 91.87±.001 91.07±.002 91.44±.001 91.72±.001 87.18±.095 88.01±.005 92.23±.01 92.03±.0
Computers 88.54±.003 88.3±.006 87.93±.004 80.28±.004 78.57±.14 74.04±.005 86.23±.139 85.16±.133
Photo 93.02±.003 93.18±002 93.64±.002 92.36±.06 86.04±.12 84.93±.009 92.87±.08 92.27±.05
Actor 28.38±.008 28.62±.01 33.88±.007 29.93±.007 63.3±.03 27.39±.01 29.41±1.46 30.19±.34
WikiCS 76.87±.006 77.38±.005 77.41±.006 70.01±.007 61.7±.52 75.25±.006 75.34±.528 75.59±.11
Facebook 89.5±.002 89.3±.01 89.25±.002 82.42±.001 78.88±0.045 86.29±0.004 86.38±.084 84.92±0.015
Flickr 51.66±.001 42.35±.001 52.11±.001 45.94±.001 † † 51.26±.528 50.91±.054
Github 86.14±.001 86.16±.001 85.77±.001 83.84±.001 83.93±0.032 † 85.58±.053 85.7±.028

Table 2: The classification accuracy results along with the standard deviation. The bold highlight indicates the best
performing algorithms from both the semi-supervised and self-supervised methods. † indicates that the algorithm has
crashed because of an out-of-memory error.

Algorithms Datasets
Yelp (ROC-AUC) Reddit (Accuracy)

CLUSTERGCN (semi) 78.21 95.33
GRAPHSAINT (semi) 75.62 95.73
PPRGO (semi) 77.7 91.8
GRAPHSURGEON 77.44 91.22

Table 3: The prediction quality for the large
scale datasets. For this experiment, we use
semi-supervised and scalable GNN architec-
tures as the full-batch ones do not fit in GPU
memory. In addition, all the SSL-GNN baselines
throw an out of memory error.

The node classification results are reported in Tables 2 and 3. Overall, GRAPHSURGEON is comparable to the semi-
supervised baselines and in-par (sometimes marginally better and at times marginally lower than) the self-supervised
baselines.

As expected, the semi-supervised models are consistently better than the self-supervised ones, except for Actor.
MVGRL gives the best result, with more than 90% improvement over the best performing method. This comes as a
result of using higher-order augmentation that happens to be beneficial for the Actor dataset. A similar performance
is not observed for MVGRL on the other datasets. This provides a motivation for automatically learning high-order
topology signals that benefit some datasets. As stated earlier, this will be covered in future work.

2We use OPTUNA for this purpose: https://optuna.readthedocs.io/en/stable/

8

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

Accuracy Avg. Time (in Sec) GPU Memory (MB)

CS
DBLP

Fa
ce

bo
ok

Pho
to

W
iki

CS
CS

DBLP

Fa
ce

bo
ok

Pho
to

W
iki

CS
CS

DBLP

Fa
ce

bo
ok

Pho
to

W
iki

CS
0

2500

5000

7500

0.0

0.1

0.2

0.3

0.4

0

25

50

75

Dataset

Loss Improved Original

Figure 2: Comparison of the original and improved loss
function in terms of accuracy, memory usage and run
time (time to finish an epoch).

50

60

70

80

90

25
0

50
0

75
0

10
00

12
50

Batch Size

A
cc

ur
ac

y

Dataset
Flickr
GitHub
Physics
Reddit
Yelp

Figure 3: Effect of batch size on GRAPHSUR-
GEON’s performance

However, our finding showcases that just using the learned attribute augmentations and without requiring explicit
negative samples, one can achieve a performance consistently close to semi-supervised models across a number of
datasets and classification tasks. On average, our model is at most 2 percentage points away from the best performing
semi-supervised method. Moreover, it scales to large networks with hundreds of millions of edges, where the other SSL-
GNN methods failed to handle.

4.3 Ablation studies

In the following, we investigate the impact of different aspects of GRAPHSURGEON.

4.3.1 Loss Function

We have seen the constrained optimization objective in Section 3.2 and also shown a way to improve it. In the following,
we analyze the effect of using the original vs. the improved loss function with respect to prediction accuracy and
resource usage. For the qualitative experiment, we train both flavors for 100 epochs and just 1 epoch otherwise. The
results of this experiment are reported in Fig 2. As expected, both flavors achieve similar qualitative performance.
Nonetheless, the improved version is significantly better than the original one in terms of memory usage and run time.

4.3.2 Batch Size

As contrastive signals are indirectly injected because of the orthogonality constraint of Eq. 4, it is important to analyze
the impact of batch size to see if a large batch size is needed to effectively avoid trivial solutions. For this reason,
we train the model using sampled neighborhood subgraphs Hamilton et al. (2018) instead of full-batch, and both the
model and the linear head are trained for 100 epochs. The results are reported in Fig. 3, and in general performance is
directly proportional to batch size until a certain point. For small datasets, there is improvement up to 1024. The largest
improvements are for the GitHub and Physics datasets, which are 7.57 (from 75.38% to 82.95%) and 7.66 perecentage
points of accuracy (from 74.35% to 82.01%), respectively. However, that is not the case for the larger ones (Reddit
and Yelp), where both smaller and larger batch sizes give comparable performance. Overall, we have not observed
qualitative differences for batch sizes bigger than 1024. In our experiments, batch size greater than 1024 is only related
to faster training, not improved quality.

9

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

CS DBLP Facebook Photo WikiCS

250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250 250 500 750 1000 1250

65

70

75

90

91

92

93

82

84

86

70

75

80

88

89

90

91

92

Embedding size

A
cc

ur
ac

y

Algorithm DGI GCA GraphSurgeon MVGRL SelfGNN/BGRL

Figure 4: Effect of embedding size on GRAPHSURGEON and the SSL-GNN baselines.

D Dropout γ µ

CS DBLP Flickr Photo WikiCS CS DBLP Flickr Photo WikiCS CS DBLP Flickr Photo WikiCS CS DBLP Flickr Photo WikiCS

0.000

0.002

0.004

0.006

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

0

100

200

300

400

Dataset

Augmentation Post Pre

Figure 5: Tuned values of the hyperparameters of GRAPHSURGEON for the pre and post augmentation techniques. D
is the number of features after augmentation and the GNN encoder for pre and post augmentations, respectively. γ the
weight of the constraint in Eq. 4, and µ is the learning rate.

4.3.3 Embedding Size

To provide a perspective, for this analysis we include the baselines. We use the same setting as the first experiment
(Tables 2 and 3), and we examine embedding sizes in [256, 512, 768, 1024, 1280]. GRAPHSURGEON and DGI have
the tendency to improve as we increase the embedding size. On the other hand, GCA and SELFGNN/BGRL, stay
the same or decrease. For MVGRL, it seems that it has the tendency to improve proportional to the embedding size.
However, we were able to observe only for 256 and 512, as it throws an out of memory error for larger values.

4.3.4 Pre vs. Post Augmentation

In terms of performance, both augmentation techniques give equivalent results. The only difference is that the hyperpa-
rameters need to be tuned separately for each one. In Fig. 5 we show the final configuration of the hyperparameters that
maximize prediction accuracy on the validation set, which are obtained using Bayesian optimization. As can be seen
from the figure, they converge to different values.

Since the main motivation for introducing the post-augmentation is efficiency, in Fig. 6 we show the memory usage and
run time (to finish an epoch) required by these variants. As anticipated, the post-augmentation is significantly faster and
has a lot less memory overhead.

4.3.5 Symmetry vs. Asymmetry

GRAPHSURGEON’s architecture can easily be replaced by an asymmetric one. For this reason, we create asymmetry just
by adding a prediction head on the left-network and inserting batch norm in the GNN encoder Kefato and Girdzijauskas
(2021); Zbontar et al. (2021); Thakoor et al. (2021). We update the parameters of both the left and right networks using

10

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

Avg. Time (in Sec) Memory (in MB)

Reddit Yelp Reddit Yelp

0

5000

10000

15000

0

20

40

Dataset

Augmentation
Post
Pre

Figure 6: Analysis of Pre and Post Augmentation tech-
niques in terms of memory usage and run time complexity
(time to finish an epoch)

0

25

50

75

CS DBLP Facebook Photo WikiCS
Dataset

A
cc

ur
ac

y

Architecture Asymmetric Symmetric

Figure 7: Comparison between GRAPHSUR-
GEON’s architecture (Symmetric) and an
Asymmetric architecture

stochastic gradient descent. As shown in Fig. 7, the performance of the asymmetric architecture is slightly lower than
the symmetric one.

4.3.6 Convergence

Recent studies Zhu et al. (2021); Zbontar et al. (2021) have shown that SSL-GNN methods usually require a large
number of epochs (several thousand) to achieve a performance comparable to semi-supervised methods. In Fig. 8 we
show GRAPHSURGEON’s convergence, and usually, 50 epochs are sufficient to achieve comparable performance to
semi-supervised methods.

4.4 Implementation Details

GRAPHSURGEON is implemented using PyTorch and PyTorch Geometric libraries.

For each augmentation head, we use a simple one-layer linear head. To avoid overfitting, we use dropout in both heads.

For the GNN encoder we use two types of architectures, which are GCN Kipf and Welling (2017) and GRAPH-
SAGE Hamilton et al. (2018). A full-batch GCN is used for the small datasets, and a mini-batch GNN based on
GRAPHSAGE with neighborhood sampling Hamilton et al. (2018) is used for the larger ones. As stated earlier, one
can substitute these with any other architecture as necessary. A dropout is also added, and finally, we use a residual
connection for the GNN encoder.

50

60

70

80

90

100 200 300 400 500
Number of Training Epochs

A
cc

ur
ac

y

Dataset
CS
DBLP
Facebook
Flickr
Photo
Reddit
WikiCS

Figure 8: Analysis of the convergence of GRAPHSUR-
GEON

11

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

As indicated using the shape of the matrices in Listing 1, we use the output of the GNN encoder as the embedding of
nodes for the pre-augmentation architecture and the output of the augmentation head for the post-augmentation case.

Although existing SSL-GNN methods Zbontar et al. (2021); Thakoor et al. (2021,?); Kefato and Girdzijauskas (2021) re-
quire different normalization strategies, such as Batch Norm and Layer Norm that is not necessary for GRAPHSURGEON;
as a result, no such normalization is used.

5 Discussion and Conclusion

In this paper, we propose a self-supervised graph representation learning method called GRAPHSURGEON based on the
Siamese network. Unlike prior methods that rely on heuristics for data augmentation, our method jointly learns the
data augmentation with the representation (embedding) guided by the signal encoded in the graph. By capitalizing
on the flexibility of the learnable augmentations, we propose an alternative new strategy for augmentation, called
post-augmentation, which happens after an encoding. This is in contrast to the standard pre-augmentation strategy
that happens before the encoding. We also show that the alternative strategy significantly improves the scalability and
efficiency of our model.

Furthermore, the method does not require explicit contrastive terms or negative sampling. However, contrary to related
studies with no contrastive terms, we employ a scalable principled constrained optimization inspired by Laplacian
Eigenmaps, as opposed to engineering tricks to prevent trivial solutions.

We perform an extensive empirical evaluation of the proposed method using 14 publicly available datasets on three
types of node classification tasks. Besides, we compare the method with strong SOTA baselines, six semi-supervised
GNNs, and five self-supervised GNNs. Our finding shows that GRAPHSURGEON is comparable to the semi-supervised
GNNs and on-par with the self-supervised ones.

In this study, we focus on learning augmentations for attribute signals. However, one can also consider topological
augmentations and we shall explore this in future work. In addition, it is also important to learn to identify if a particular
type (topological/attribute) or a combination thereof is relevant to a down stream task. Finally, this study does not
inspect and interpret the learned augmentations, and further study is necessary to shed more insight regarding what is
learned.

References
Adrien Bardes, Jean Ponce, and Yann LeCun. 2021. VICReg: Variance-Invariance-Covariance Regularization for

Self-Supervised Learning. arXiv:2105.04906 [cs.CV]
Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.

Neural Computation 15, 6 (2003), 1373–1396. https://doi.org/10.1162/089976603321780317
Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. 2021. Graph Barlow Twins: A self-supervised representation

learning framework for graphs. arXiv:2106.02466 [cs.LG]
Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózemberczki,

Michal Lukasik, and Stephan Günnemann. 2020. Scaling Graph Neural Networks with Approximate PageRank.
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Jul
2020). https://doi.org/10.1145/3394486.3403296

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1993. Signature Verification Using a
"Siamese" Time Delay Neural Network. In Proceedings of the 6th International Conference on Neural Information
Processing Systems (Denver, Colorado) (NIPS’93). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
737–744.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges. arXiv:2104.13478 [cs.LG]

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. 2020. Unsupervised
Learning of Visual Features by Contrasting Cluster Assignments. CoRR abs/2006.09882 (2020). arXiv:2006.09882
https://arxiv.org/abs/2006.09882

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. 2021.
Emerging Properties in Self-Supervised Vision Transformers. CoRR abs/2104.14294 (2021). arXiv:2104.14294
https://arxiv.org/abs/2104.14294

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2019. Measuring and Relieving the Over-smoothing
Problem for Graph Neural Networks from the Topological View. arXiv:1909.03211 [cs.LG]

12

https://doi.org/10.1162/089976603321780317
https://doi.org/10.1145/3394486.3403296
https://arxiv.org/abs/2006.09882
https://arxiv.org/abs/2104.14294

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph Convolutional Networks via Importance
Sampling. arXiv:1801.10247 [cs.LG]

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020. A Simple Framework for Contrastive
Learning of Visual Representations. CoRR abs/2002.05709 (2020). arXiv:2002.05709 https://arxiv.org/abs/
2002.05709

Xinlei Chen and Kaiming He. 2020. Exploring Simple Siamese Representation Learning. CoRR abs/2011.10566 (2020).
arXiv:2011.10566 https://arxiv.org/abs/2011.10566

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. 2019. Cluster-GCN. Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Jul 2019). https:
//doi.org/10.1145/3292500.3330925

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural Message
Passing for Quantum Chemistry. arXiv:1704.01212 [cs.LG]

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl
Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,
Rémi Munos, and Michal Valko. 2020. Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning.
CoRR abs/2006.07733 (2020). arXiv:2006.07733 https://arxiv.org/abs/2006.07733

William L. Hamilton. 2020. Graph Representation Learning.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation Learning on Large Graphs.
arXiv:1706.02216 [cs.SI]

Kaveh Hassani and Amir Hosein Khas Ahmadi. 2020. Contrastive Multi-View Representation Learning on Graphs.
CoRR abs/2006.05582 (2020). arXiv:2006.05582 https://arxiv.org/abs/2006.05582

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2019. Momentum Contrast for Unsupervised
Visual Representation Learning. CoRR abs/1911.05722 (2019). arXiv:1911.05722 http://arxiv.org/abs/1911.
05722

Zekarias T. Kefato and Sarunas Girdzijauskas. 2021. Self-supervised Graph Neural Networks without explicit negative
sampling. CoRR abs/2103.14958 (2021). arXiv:2103.14958 https://arxiv.org/abs/2103.14958

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks.
arXiv:1609.02907 [cs.LG]

Ishan Misra and Laurens van der Maaten. 2019. Self-Supervised Learning of Pretext-Invariant Representations. CoRR
abs/1912.01991 (2019). arXiv:1912.01991 http://arxiv.org/abs/1912.01991

Kenta Oono and Taiji Suzuki. 2021. Graph Neural Networks Exponentially Lose Expressive Power for Node Classifica-
tion. arXiv:1905.10947 [cs.LG]

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020. Geom-GCN: Geometric Graph
Convolutional Networks. arXiv:2002.05287 [cs.LG]

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale Attributed Node Embedding.
arXiv:1909.13021 [cs.LG]

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pitfalls of Graph
Neural Network Evaluation. arXiv:1811.05868 [cs.LG]

Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. 2021. MoCL: Contrastive Learning on Molecular
Graphs with Multi-level Domain Knowledge. arXiv:2106.04509 [physics.bio-ph]

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković, and Michal Valko.
2021. Bootstrapped Representation Learning on Graphs. arXiv:2102.06514 [cs.LG]

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018a. Graph
Attention Networks. arXiv:1710.10903 [stat.ML]

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. 2018b. Deep
Graph Infomax. arXiv:1809.10341 [stat.ML]

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised Heterogeneous Graph Neural Network with
Co-contrastive Learning. arXiv:2105.09111 [cs.LG]

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. 2019.
Simplifying Graph Convolutional Networks. arXiv:1902.07153 [cs.LG]

13

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2011.10566
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/2006.05582
http://arxiv.org/abs/1911.05722
http://arxiv.org/abs/1911.05722
https://arxiv.org/abs/2103.14958
http://arxiv.org/abs/1912.01991

Jointly Learnable Data Augmentations for Self-Supervised GNNs A PREPRINT

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and Stefanie Jegelka. 2018.
Representation Learning on Graphs with Jumping Knowledge Networks. arXiv:1806.03536 [cs.LG]

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph Contrastive Learning Automated. CoRR
abs/2106.07594 (2021). arXiv:2106.07594 https://arxiv.org/abs/2106.07594

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph Contrastive
Learning with Augmentations. CoRR abs/2010.13902 (2020). arXiv:2010.13902 https://arxiv.org/abs/2010.
13902

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. 2021. Barlow Twins: Self-Supervised Learning via
Redundancy Reduction. CoRR abs/2103.03230 (2021). arXiv:2103.03230 https://arxiv.org/abs/2103.03230

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. 2020. GraphSAINT: Graph
Sampling Based Inductive Learning Method. arXiv:1907.04931 [cs.LG]

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. 2020. Towards Deeper Graph Neural
Networks with Differentiable Group Normalization. arXiv:2006.06972 [cs.LG]

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020. Deep Graph Contrastive Representation
Learning. arXiv:2006.04131 [cs.LG]

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021. Graph Contrastive Learning with
Adaptive Augmentation. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association
for Computing Machinery, New York, NY, USA, 2069–2080. https://doi.org/10.1145/3442381.3449802

14

https://arxiv.org/abs/2106.07594
https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/2103.03230
https://doi.org/10.1145/3442381.3449802

	1 Introduction
	2 Related Work
	3 GraphSurgeon
	3.1 Learning Data Augmentation
	3.2 Joint Training of the Parameters
	3.3 Scalability

	4 Experiments
	4.1 Experimental Protocol
	4.2 Results
	4.3 Ablation studies
	4.3.1 Loss Function
	4.3.2 Batch Size
	4.3.3 Embedding Size
	4.3.4 Pre vs. Post Augmentation
	4.3.5 Symmetry vs. Asymmetry
	4.3.6 Convergence

	4.4 Implementation Details

	5 Discussion and Conclusion

