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Abstract—Network softwarization has revolutionized the archi-
tecture of cellular wireless networks. State-of-the-art container
based virtual radio access networks (vRAN) provide enormous
flexibility and reduced life cycle management costs, but they also
come with prohibitive energy consumption. We argue that for
future AI-native wireless networks to be flexible and energy effi-
cient, there is a need for a new abstraction in network softwariza-
tion that caters for neural network type of workloads and allows
a large degree of service composability. In this paper we present
the NeuroRAN architecture, which leverages stateful function
as a user facing execution model, and is complemented with
virtualized resources and decentralized resource management.
We show that neural network based implementations of common
transceiver functional blocks fit the proposed architecture, and
we discuss key research challenges related to compilation and
code generation, resource management, reliability and security.

Index Terms—function as a service, serverless computing,
network softwarization, neural networks, energy efficiency, radio
access network, AI-native wireless

I. INTRODUCTION

OVER the last years, we are witnessing significant efforts
in designing a software-based virtualized radio access

network (vRAN) architecture running on commercial off the
shelf (COTS) hardware, in an attempt to reduce development
and maintenance costs, and to replace static and monolithic
architectures with programmable and flexible ones. Software-
based vRAN on COTS hardware indeed offers enormous
flexibility. Flexibility is essential to support emerging appli-
cations that will tightly integrate with physical processes, e.g.,
augmented reality and cognitive assistants, real-time cyber-
physical control systems, as well as situational awareness
systems. At the same time it is a precondition for further
antenna densificiation, which is the primary approach to
providing increased capacity, lowering latency and increasing
reliability. Yet, vRAN also comes with prohibitive energy
consumption, and would require a tenfold increase in energy
efficiency to allow wide scale adoption. Moreover, as of today,
a fast and flexible programmable control framework, which
can jointly meet real-time requirements of lower layers of
the protocol stack, and can autonomously adapt to the time-
varying network dynamics does not exist.
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As 5G networks are rolled out all over the world, the
requirements for next generation (6G) systems are just start-
ing to be discussed in academia and in industry. The main
application-level drivers for a future radio access network
include increased trustworthiness and the ability to cope with
emerging applications, such as XR/VR, gaming, smart sensors,
internet-of-sense applications, and digital twins. Many of these
applications require or generate massive amounts of data and
have tight delay requirements. At the same time, over the last
few years we have been witnessing an unprecedented push
in communications research towards data-driven approaches.
While the degree of functional involvement of machine learn-
ing varies so far with respect to the discussed approaches,
many presented studies demonstrate on-par performance of
data-driven approaches in comparison to legacy model-based
ones. Thus, it appears quite likely that next generation RANs
will include widespread use of AI within transceivers. At the
same time, it goes without saying that they should be an
enabler for a sustainable society, and that all this has to come
at an affordable cost.

In this paper, we argue that the promises of ML in next-
generation systems require suitable software architectures to
actually deliver. These go well beyond standard container-
based approaches leveraged today with respect to flexible RAN
solutions such as O-RAN [1]. The main components of such
future architecture relate to efficient virtualization with respect
to more adapt hardware, for instance, for neural network types
of workloads, the provisioning of virtualized resources towards
functional software blocks allowing fine-grained composition
and function splits, as well as on-demand deployment of
corresponding RAN transceiver code. To this end, we present
NeuroRAN, illustrated in Figure 1, a matching software ar-
chitecture for next-generation mobile networks, while also
discussing newly arising challenges in the intersection between
software architectures and ML-based transceiver software for
future RANs.

The reminder of the paper is organized as follows. In
Section II we briefly discuss the evolution towards softwarized
and virtualized mobile networks architectures and present
current trends in deploying neural networks for design and
adaptation of wireless communication in Section III. In Section
IV we propose NeuroRAN, our energy-efficient and flexible
AI-native RAN architecture and discuss the main research
challenges to be addressed in Section V. Finally in Section
VI we conclude the paper.
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Fig. 1. AI-native RAN Architecture Overview

II. SOFTWARIZATION OF MOBILE NETWORK
ARCHITECTURES

Early product-grade LTE implementations were leveraging
custom hardware and software in the RAN as well as in
the EPC (evolved packet core). They were optimized with
respect to energy consumption, but left little room for func-
tional enhancements and required high coordination bandwidth
among eNBs (base stations) with the advent of sophisticated
interference coordination schemes. RAN softwarization was
arguably triggered by the emergence of software-defined net-
working (SDN) and network function virtualization (NFV)
as new implementation paradigms for wide-area networks,
allowing enhanced flexibility and separation of control and
data plane functionality for enhanced control. Vendors of
LTE networks introduced the virtualized EPC, which too
allowed a higher degree of flexibility and efficiency. Moreover,
softwarization triggered the move away from the traditional
non-split RAN architecture in LTE, i.e., where within the
same cabinet all baseband processing and analog-to-digital
processing is performed, to the split architecture in cloud RAN
(C-RAN), where baseband units of different eNBs can be
centrally pooled while A/D conversion is performed locally by
radio units. However, by being able to pool baseband units,
in particular interference coordination was easily achieved in
LTE Advanced by running associated and virtualized base-
band units on the same resource pool. Meanwhile, with the
introduction of C-RAN the hardware dependency in the pool
assignment has been lifted, allowing corresponding baseband
units to be moved almost freely over a compute infrastructure.
Nevertheless, due to the legacy of the basic function definition
of LTE systems, the potential of network function virtualiza-
tion could not be fully leveraged.

The architecture of 5G systems has been defined from the
start with softwarization and virtualization in mind. Loosely
speaking, the approach taken is to define smaller functional
units that can be operated independently and thus be placed
more flexibly over virtualized resources. For the radio access
network, this has led to the definition of radio units (RUs),

distributed units (DUs) and central units (CUs) being defined
as the building blocks of gNBs, the equivalent entities of
LTE eNBs in 5G. The resulting architecture is more flexible,
as only the RUs are dependent on specific hardware for
A/D conversion and for analog handling of the signal. In
contrast, DUs and CUs can be executed on COTS hardware for
realizing the lower and upper parts of the RAN network stack.
Frameworks like O-RAN or SD-RAN realize these vRAN
implementations of 5G systems, and represent the state-of-
the-art in fully softwarized mobile radio access networks.

The downside to the increase in flexibility is increased
power consumption. While power consumption of a RAN
results from the intimate relationship between architecture,
implementation, run-time optimization and other aspects like
cooling, focusing on the power consumption of a virtualized
transceiver alone running on a general purpose processor
steeply increases the consumption in comparison with pro-
cessors custom-made for this purpose. This is not specific to
any transceiver algorithm, but applies in general to almost all
virtualized functions. In existing wireless transceivers this has
led to the use of customized hardware environments, mostly
utilizing accelerators for certain functionality, at the price of
loosing flexibility. With the advent of massive MIMO and
its exponentially increasing processing demands, the necessity
to reduce the power consumption in future virtualized RANs
becomes paramount.

III. NEURAL NETWORK ABSTRACTION AND
APPLICATIONS IN MOBILE AND WIRELESS NETWORKS

The significant breakthroughs in neural networks for classi-
fication and pattern recognition associated with the advances in
training acceleration through the use of GPUs about ten years
ago, have led to enormous interest in using machine learning
for various problems in communication systems. In particular,
deep learning (DL) has recently shown a great potential to
become a powerful tool to design, optimize, adapt, and secure
wireless communications.

Deep learning makes use of deep neural networks (DNNs)
which are cascades of parallel processing layers with in-
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dividual connectivity degrees. In general, neural networks
provide flexible abstractions to any functional input/output
relationship at hand, for which sufficient training data is
available. Through training, DL is capable of approximating
functions and complex inter-relationships of variables that are
hard to accurately describe using mathematical models. By
doing so, DNNs enable novel approaches to the design of
wireless communication systems without the knowledge of
accurate mathematical models, e.g. unknown channel models.

While the potential performance improvements of a DNN-
based wireless communication system design are currently
receiving significant research attention, it is evident that flex-
ibility of the implemented processing structure, as well as
implementation costs and adaptability with the evolution of
communication systems are strong additional arguments for
the application of DNNs in communication systems. In the
following we will discuss few representative applications of
DNNs to communications transceiver and protocol design.

A. DNNs for Low-Layer Transceiver Architectures

A plethora of research works have recently emerged
studying machine learning applications to communication
systems design. With respect to implemented architectures,
works either focus on substituting individual functions in the
transceiver chains, or more progressively substituting larger
blocks, primarily in the physical layer. Examples of the first
category comprise for instance works on signal detection [4],
channel estimation [5], or signal demapping in broadband
wireless communication systems [6]. In all cases, it can be
shown that deep learning, given sufficient training data, is
either on par with legacy (model-based) approaches, or even
outperforms them. Depending on the application, this can
come with a lower complexity of the learning approach.

Works focusing on larger functional blocks typically pro-
pose to substitute several processing steps of the physical
layer by a suitable aggregate DNN. A good example is for
instance the recent seminal work [3]. It introduces a DNN-
based OFDM receiver implementation, converting frequency-
domain signal samples into uncoded bits with soft information.
Thus, equalization, channel estimation and signal demapping
are substituted by one trained neural network. The work
demonstrates the applicability of this approach to 5G new
radio compliant signals, showing on par performance with
legacy receiver structures. Complexity-wise, the proposed neu-
ral network performs best with roughly 1 million parameters
in a ResNet structure (a special type of connectivity structure
of the neural network), while scaling it to larger bandwidths
asymptotically becomes equivalent to LMMSE receivers.

Another fundamental approach to substituting entire blocks
of transceivers is given by end-to-end approaches [2]. Here,
in contrast to [3], the entire transmitter and receiver are sub-
stituted through DNNs, which allows for channel-specific sig-
nalling schemes. In detail, variational autoencoders are utilized
for the joint training of transmitter and receiver. Training such
special deep neural data structures encompasses an end-to-
end consideration, giving the approach also its name. In other
words, end-to-end approaches are most consequent in moving

away from model-based transceivers, potentially jeopardising
traditional system standardization. The authors showed that
for narrowband, single-carrier systems the approach is in
principle viable, achieving results that are on par with model-
based implementations. In terms of real-time performance, the
implementation is not yet up to speed, though.

B. DNNs for Higher-Layer Functionality

While the bulk of information processing of any wireless
transceiver is related to the physical layer, deep learning has
been also considered higher up in the (wireless) network
stack. Focusing again first on works that consider to substitute
individual functions of the network stack, efforts have been
made for instance with respect to performing resource alloca-
tion for 5G networks by DNNs [11]. Further works consider
channel allocation for dynamic spectrum access [7] or focus on
improving sensing/classifying accuracy for dynamic spectrum
access systems [8].

In contrast to substituting individual functions, a different
category of works focus on automating the parameter tuning
of communication protocols. When it comes to learning-based
medium access protocol approaches, the research is in its
infancy and mainly addresses learning optimal channel access
policies. Dynamic protocol composition from a set of atomic
components by means of deep neural networks has been
presented in [9]. More work has been done in the transport
layer, where deep neural networks have been proposed to
design congestion control algorithms and learn an optimal TCP
congestion control policy from rich parameter observations
of the network environment (e.g Queuing delay, inter-arrival
times, round trip time (RTT), lost packets, etc.) [10]. In con-
trast, conventional congestion control only considers several
measurements such as packet loss and RTT as indicators
of congestion, and cannot easily adapt to new networks or
leverage experiences from the past.

The emerging research works and the encouraging initial
results on deploying DNNs in the design of communication
system components and functions at different layers suggest
an upcoming paradigm shift in the way how wireless and
mobile networks will be architected in the 6G era and beyond.
In the far future one could also envision that the future
networks could be possibly designed by AI. Despite of this
great promise, to pave the road towards native AI design a
number of challenges will have to be resolved. Most notably,
there will be a need for a software architecture that will support
DNN processing and computation in a flexible but energy
efficient way. In the following section we propose one such
approach.

IV. ENERGY-EFFICIENT AI-NATIVE RAN: THE
NEURORAN ARCHITECTURE

Neural networks show great promise for various baseband
and PHY processing tasks, and could become building blocks
of a future, flexible RAN architecture. Yet, adopting neural
processing on top of existing software abstractions will un-
likely result in energy-efficient operation. Existing software
and resource abstractions, virtual machines and containers,
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Fig. 2. NeuroRAN Software Component Stack in the O-RAN Architecture.

were optimized for data center environments with abundant,
homogeneous hardware and for slowly changing environ-
ments. Consequently, they would result in significant memory
and computational overhead in the implementation of an AI-
native RAN. In lack of an abstraction for neural processing
they would also fall short on flexibility due to the reliance
on custom hardware accelerators, e.g., FPGAs, and cannot
efficiently support adaptive composition of processing chains
on short time scales.

For a softwarized AI-native RAN to be energy-efficient and
flexible, there is a need for a software architecture where AI-
native functions are ”first class citizens”, as opposed to VMs
and containers. The architecture should match the data-centric
abstraction of computing that neural processing provides, i.e.,
agnostic to instructions sets, memory hierarchy, etc, which
facilitates code reuse, portability and hardware maintenance.
Furthermore, it should support fine-grained provisioning of
resources, based on fine-grained compute actions without the
need to allocate compute and network resources for long time
periods (e.g., hours, days).

To address this gap, we propose the NeuroRAN architec-
ture, which complements the O-RAN design through four
main components, illustrated in Figure 2. First, we adopt the
emerging paradigm of stateful function as a service (sFaaS)
[12], which is becoming dominant in the domain of cloud
virtualization for scalable applications [14]. Functions are ideal
building blocks to compose decentralized dataflow applica-
tions (e.g., stateful streaming [15]) and services, incorporating
data subscription and session management and on-demand
scalability (group communication, multiplayer gaming, collab-
orative editing apps, remote and VR control systems). Second,
NeuroRAN, a novel abstraction of neural-network on demand
that can be supported and offered on top of stateful FaaS.
NeuroRAN uses neural processing as a ubiquitous abstraction
for common tensor-centric workloads extended with native
support for tensor-centric hardware that is energy-efficient for
tensor computations (e.g., FPGAs, TPUs) as a service. Third,
adoption of virtualization of compute, storage and commu-
nication resources to enable seamless migration of functions
over heterogeneous hardware, alongside their corresponding

TABLE I
FEATURE COMPARISON OF CONTAINER-BASED AND STATEFUL FAAS

ABSTRACTION FOR AI-NATIVE RAN.

Software Feature Container-based sFaaS
Memory footprint Moderate Low

CPU overhead Significant Low
Scalability Custom On-Demand

Maintenance Custom Automatic
Compute/Latency-Intensity Custom On-Demand

Hardware/Energy Consumption Static Dynamic
Composability Coarse Fine

Platform independence No Yes
Resource management Coarse Fine

Data path Memory Message passing
Reliability Custom Built-in

state and data dependencies. Fourth, decentralized resource
management, which is itself a decentralized tensor-centric data
flow application in the proposed framework, which can be
migrated and executed on-demand. Table I summarizes the
main advantages of the proposed architecture compared to
a state-of-the-art container-based architecture, as utilized for
instance in O-RAN.

Starting from the bottom of the proposed middleware stack
this leads to the following software components.
RAN Virtualization Layer: We propose the creation of a
lightweight virtualization service that offers resource as a
service capability to edge nodes with heterogeneous hardware
in mind. This includes compute and memory resources such
as GPUs, TPUs, flash memory, NVMe, RAM, and network
resources. The virtualization layer should guarantee strong
isolation and security of the resources, as well as the flexibility
to compose and utilize custom configurations by combining
memory, storage, network and compute components to facil-
itate the implementation of sFaaS on top. The virtualization
layer should natively support the orchestration of the resources
to meet performance metrics required by the utilized services
(e.g., energy consumption, time allocation, local IO, network
IO, vCPU instructions).
Stateful Function as a Service: As a user-facing execution
model we propose the adoption of sFaaS. We envision the use
of this paradigm both for lower network protocol functions
(e.g., RU, DU, and CU) that exist in the O-RAN architecture
as well as for the deployment of applications and services
that can be executed on demand on top of edge nodes.
The main differentiation to serverless functions known in
cloud computing (e.g., Amazon Lambda) is the addition of
explicit state and support for building end-to-end decentralized
dataflow services composed out of interconnected functions
that can communicate through remote invocations or via
message passing.
NeuroRAN: As discussed in the previous section, most RAN
functions that today are model-driven can be substituted by
data-driven implementations. NeuroRAN allows for automat-
ing the deployment of data-driven implementations of RAN
functions and other edge micro-services, including network
functions (NFs) in the core network and emerging network
data analytics function (NWDAF) services. NeuroRAN in-
stances can be created, instantiated, trained and used for
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TABLE II
OVERVIEW OF STATEFUL AND STATELESS TRANSCEIVER FUNCTIONAL BLOCKS

Function Stateful? Parameters State
A/D Conversion No Baseband sampling frequency

STO, CFO correction No Signal type
PHY PDU extraction Yes Scheduling grant
Channel estimation No Signal type, pilot position

Equalization No Signal type, channel estimate
Signal (de)mapping Yes Modulation scheme

(De-)Interleaving No Interleaving scheme
Encoding, Decoding Yes Coding scheme, coding block length
CRC insertion,check No Block length, CRC scheme

En-/De-cryption Yes Key, encryption scheme Cipher state

inference via a standard programming interface.
Decentralized Resource Management: A crucial component
of the proposed middleware architecture is decentralized re-
source management. Supporting a FaaS deployment model
requires the ability of the middleware to migrate functions and
their corresponding state across nodes as well as scaling out
resources elastically when needed. A resource management
middleware can support and optimise these functions towards
fair allocation of resources across decentralized edge nodes.
Furthermore, this type of service has to be adaptive to cope
with the dynamic nature of edge networks (failure detection,
service discovery, reconfiguration etc.). In this setting service
level agreements (SLAs) can specify requirements in terms
of latency, throughput, and availability, and the objective of
resource management is to minimize energy consumption
subject to meeting all SLAs.

While many candidate application workloads for edge com-
puting are inherently tensor-centric, such as visual analytics,
autonomous industrial systems, cars and drones, a fundamental
question for the feasibility of the proposed architecture is
whether typical transceiver functional blocks can be imple-
mented in the FaaS model. Table II shows a list of radio
transceiver functional blocks, their typical parameters and
whether they require state to be maintained. The table indicates
that out of ten functional blocks four require a stateful FaaS
implementation, and for three of those the state is due to their
dependence on scheduling decisions, which are performed at
the same time scale as the functions would be invoked.

V. RESEARCH CHALLENGES

The proposed architecture introduces a set of core chal-
lenges that we foresee are necessary to be addressed. We
categorize them in a bottom-up fashion from the virtualization
layer up to resource and service management.
Virtualization over Heterogeneous Hardware: At the lowest
level we identify a set of problems that need to be addressed in
order to enable seamless support for sFaaS, ranging from com-
pilation and code generation to deployment and provisioning.
Heterogeneous hardware should be supported out of the box
without the need for reconfiguring and re-compiling libraries
in edge nodes. To that end, there is a need for on-demand code
generation techniques that can translate high-level sFaaS pro-
gram specifications to low-level instructions supported by the
underlying hardware (GPUs, multicore x86, TPUs and DSPs,
for compatibility with legacy RAN hardware). Recent works

in compiler research adopt intermediate code representations
and build on widely adopted LLVM libraries, such as multi-
level intermediate representation (MLIR [13]), which already
support a number of existing representations and compilation
tools for current and upcoming hardware architectures. Fi-
nally, we foresee it to be necessary to employ decentralized
provisioning of services using sFaaS with respect to 3 core
usage metrics: aggregated number of invocations, IO (state
size) and data transferred across functions. The management
of all the provisioning of these metrics needs to be made
consistently and efficiently, which is a challenging task itself
in a heterogeneous environment.
Resource Management in Dynamic and Heterogeneous
Environments: A key enabler of the proposed architecture is
decentralized scheduling enabling on-demand resource alloca-
tion, instantiation, migration and invocation of stateful FaaS.
Existing approaches to resource management do not apply well
to neural network abstractions and cannot provide throughput
and latency guarantees in highly distributed environments.
Recent efforts on applying deep learning to resource manage-
ment would need to be extended to the multi-agent setting,
but the convergence and stability of the resulting systems is
not well understood. A promising direction could be the use
of graph convolutional network (GCN) embeddings, possibly
starting from an initial model through iterative refinement and
including performance SLAs as multi-objective optimisation
variables in the training process of the network. Doing so could
provide predictable performance in the spirit of safe machine
learning.
Reliability and Security: Among the biggest challenges of
adapting cloud computing technologies to decentralized edge
networks are reliability and security. Reliability not only
involves provisioning of resources in response to failures,
but also processing guarantees (number of times a function
is executed) and consistency guarantees (for service state)
despite failures. This is especially challenging in edge net-
works under high churn. In addition, FaaS requires strong
isolation guarantees (process memory, non-volatile storage,
virtual CPUs) offered by the underlying virtualization layer,
which is important both for accurate provisioning as well as
for the secure execution of FaaS. Finally, state management
for FaaS over COTS opens many new challenges such as the
need for automated state partitioning, migration, encryption-
support as well as consistency guarantees at a dataflow- or
FaaS-level in the presence of partial failures.
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VI. CONCLUSION

Motivated by the increasing importance of energy-efficiency
in RAN operations, in this article we discussed the require-
ments that the migration to an AI-native RAN would impose
on software abstractions in beyond 5G networks. We presented
arguments that show that combining flexibility with energy
efficiency would require going beyond existing abstractions,
and could be possible by extending the emerging serverless
computing paradigm to a stateful FaaS model combined with
a neural abstraction of computing functions. The proposed
architecture has the potential to meet the performance and
reliability requirements of beyond 5G wireless networks, but
it remains to understand what tradeoffs it involves in terms of
security.
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