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a b s t r a c t 

Predicting the future trajectories of pedestrians is a challenging problem that has a range of application, 

from crowd surveillance to autonomous driving. In literature, methods to approach pedestrian trajectory 

prediction have evolved, transitioning from physics-based models to data-driven models based on recur- 

rent neural networks. In this work, we propose a new approach to pedestrian trajectory prediction, with 

the introduction of a novel 2D convolutional model. This new model outperforms recurrent models, and 

it achieves state-of-the-art results on the ETH and TrajNet datasets. We also present an effective system 

to represent pedestrian positions and powerful data augmentation techniques, such as the addition of 

Gaussian noise and the use of random rotations, which can be applied to any model. As an additional 

exploratory analysis, we present experimental results on the inclusion of occupancy methods to model 

social information, which empirically show that these methods are ineffective in capturing social interac- 

tion. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Pedestrian trajectory prediction is a challenging task that is 

aining increasing attention in recent years because its appli- 

ations are becoming more and more relevant. These applica- 

ions include human surveillance, socio-robot navigation and au- 

onomous driving. Because these areas have become more impor- 

ant and demanding over time, methods to approach the problem 

f pedestrian trajectory prediction have evolved, transitioning from 

hysics-based models to data-driven models that use deep learn- 

ng. One of the main sources of information that these models use 

s the past trajectory, and thus its representation is has a great im- 

act. Moreover, the deep learning architectures used are sequence- 

o-sequence, which have evolved beyond recurrent models during 

he last years. 

One of the first approaches in pedestrian behaviour modelling 

as introduced by Helbing et al. and it is called Social Forces 

odel [1] . Physics-based models like this have been extensively 

eveloped in the past, with the introduction of other techniques 

uch as BRVO [2] . However, in recent years the data-driven ap- 

roach to pedestrian behaviour modelling has become increasingly 

opular, thanks to its promising results. One of the most influen- 
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ial neural networks architecture in pedestrian trajectory predic- 

ion was introduced by Alahi et al. under the name of Social LSTM 

3] . Since then several different deep learning architectures have 

een proposed. Common elements in these recent works are the 

se of Generative Adversarial Networks [4] , the use of Graph Neu- 

al Networks [5] , the integration of attention [6] and the inclusion 

f spatial [7] and image information [8] . 

Despite the vast number of different neural network-based ap- 

roaches, there are still some unexplored aspects. The first one 

s data pre-processing. Pedestrian trajectory prediction models get 

ast positions as input, however, there is no detailed study inves- 

igating if these coordinates should be normalized and what is the 

est normalization technique. Moreover, the total amount of pub- 

icly available data is limited, while it is widely understood that 

eural networks perform better with a vast amount of data. To ad- 

ress the issue of limited data, a solution could be to use data aug- 

entation. However, this approach is often not explored in detail 

n publications. Consequently, it is currently unknown what nor- 

alization and data augmentation techniques are most effective in 

edestrian trajectory prediction. 

Another topic hardly explored in literature, [9] being the excep- 

ion, is the use of Convolutional Neural Networks (CNN) in pedes- 

rian trajectory prediction. In the machine translation and image 

aption fields it was proved, in works such as [10] and [11] , that

NNs are a valid alternative to Recurrent Neural Networks (RNN). 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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owever, in pedestrian trajectory prediction, a detailed confronta- 

ion is still missing. 

Consequently, the objective of this work is to find effective pre- 

rocessing techniques and to develop a convolutional model capa- 

le of outperforming models based on RNN. Models presented in 

his work are designed to be employed in scenarios in which only 

he past positions (in meters) of each pedestrian in a certain area 

re known. It is assumed that no information is available about the 

nvironment in which pedestrians move. 

Fulfilling the outlined objectives the main contributions of this 

ork are the following: 

• The identification of effective position normalization techniques 

and data augmentation techniques, such as random rotations 

and the addition of Gaussian noise; 
• The introduction of a novel model based on 2D convolutions ca- 

pable of achieving state-of-the-art results on the ETH and Tra- 

jnet dataset. 

In addition, we also present experimental results obtained in- 

luding social information in the convolutional model. These ex- 

eriments empirically show that occupancy methods are ineffec- 

ive to represent social information. 

The remainder of this paper is organized as follows. 

ection 2 introduces the related work. Section 3 introduces 

he problem and then presents the main techniques used, divided 

n data pre-processing, data augmentation, the proposed convo- 

utional architecture, the recurrent baselines and techniques to 

dd social information. Section 4 presents the datasets, the met- 

ics, the implantation details and the results for each one of the 

roposed techniques in the previous section, and it is concluded 

ith a comparison with literature results on the chosen datasets. 

ection 5 reports a qualitative analysis of the findings. Finally, 

ection 6 concludes. 

. Related work 

Early work from Helbing and Molnar [1] pioneered the use of 

hysics-based models for predicting human trajectory. Their ap- 

roach, the Social Forces model, considers every pedestrian as a 

article subject to forces from nearby people and obstacles, and 

he sum of these forces gives the next pedestrian position. Physics- 

ased pedestrian behaviour modelling has evolved over time, with 

he introduction of advanced techniques such as [12,13] and BRVO 

2] . 

These physics-based models, however, are limited by the fact 

hat they use hand-crafted function, and thus they can represent 

nly a subset of all possible behaviours. Deep learning models are 

ata-driven and thus do not have this limitation. In literature, deep 

earning models for pedestrian trajectory prediction rely mainly on 

he use of Recurrent Neural Networks (RNN). One of the first works 

sing such approach that pioneered the use of deep learning in 

edestrian trajectory prediction is the Social LSTM model [3] . In 

his model, pedestrian trajectory together with social information 

s fed to an LSTM. Social information is used to model social inter- 

ction and it is represented as a grid containing nearby pedestri- 

ns. 

Later works continued to use social interaction, such as in [14] , 

ut have also employed more advanced techniques, such as atten- 

ion. Attention was first applied in the machine translation field 

15] , and one of the first work to use it for pedestrian trajectory 

rediction was introduced by Fernando et al. [6] . Since then mul- 

iple works have used attention in different parts of the architec- 

ure [16,17] . A common characteristics of models based on RNN, 

oth with and without attention, is that they are significantly more 

omputationally expensive than other approaches, such as physics- 
2 
ased models and convolutional models, because of their recurrent 

ature. 

Generative Adversarial Networks (GAN) [18] are a way to gen- 

rate new synthetic data similar to training data. GAN have been 

een as a way to address the multi-modal aspect of pedestrian tra- 

ectory prediction. One of the first works to use a GAN for creat- 

ng multiple pedestrian trajectories was the Social GAN [4] model. 

n recent years the generative approach for pedestrian trajectory 

rediction has been extensively explored by other works using not 

nly GAN [8,19,20] , but also using Conditional Variational Auto- 

ncoders (CVAE) [21,22] . Since generative models do not have a 

nique output trajectory given an input trajectory, in literature 

hey are usually evaluated using the best-of-N method, in which 

 samples trajectories are generated for each input trajectory, and 

he prediction error is equal to the lowest error among the gener- 

ted paths. 

Another possible method to tackle the pedestrian trajectory 

rediction problem is by applying to it Graph Neural Networks 

GNN). With this approach a GGN is used to describe pedestrians 

nd their interactions through a graph: pedestrian are represented 

s the graph nodes while their interaction are the graph edges. One 

f the first works to apply GNN to pedestrian trajectory prediction 

as [5] , followed by others like [23] . Recently, GNN have also been

sed to model not only social interactions but also spatial interac- 

ions, as done in works such as [24–26] . 

Some authors have also tried to use other available sources of 

nformation to predict the future trajectory. Some works use spa- 

ial information represented as points of interest [27,28] , as an 

ccupancy map [7] , or as a semantic segmentation of the scene 

29,30] . Meanwhile, other works use image information extracted 

irectly from the dataset videos [8,19,21] . The biggest limitation for 

hese models in undoubtedly the fact that spatial or image infor- 

ation is often not available, since having that type of data usually 

equires additional infrastructure or prior knowledge of the envi- 

onment. 

While significant effort has been spent on more complex mod- 

ling, in the pedestrian trajectory prediction literature there has 

ot been an extensive exploration of convolutional models and of 

ata pre-processing techniques, such as data normalization and 

ata augmentation. Therefore, this work aims to expand on the 

urrent literature by presenting effective pre-processing techniques 

nd by proposing a novel convolutional architecture capable of 

utperforming more complex models. 

. Method 

In this section, the problem is first formally presented. Then we 

escribe different approaches to data-preprocessing, such as data 

ormalization and data augmentation. Afterwards, the proposed 

onvolutional architecture is presented, followed by the introduc- 

ion of recurrent baselines. Finally, the chosen approaches to in- 

lude social information are introduced. 

.1. Problem formulation 

The goal of pedestrian trajectory prediction is to predict pedes- 

rians future positions given their previous positions. Concretely, 

iven a scene where pedestrians are present, their coordinates are 

bserved for a certain amount of time, called T obs , and the task is 

o predict the future coordinates of each pedestrian from T obs to 

 pred−1 (assuming that time start at 0). A discretization of time is 

ssumed, in which the time difference between time t and time 

 + 1 is the same as the time difference between time t + 1 and

ime t + 2 . The position of each pedestrian is characterized by its 

x, y ) coordinates (in meters) with respect to a fixed point, arbi- 

rarily selected and unique for each scene. Therefore, for pedes- 
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Fig. 1. The same trajectory of a pedestrian going upward in the four different coordinate systems. The observed positions are in blue and the future positions are in 

green. (a) Absolute coordinates. (b) Origin at time t = 0 (the first observation point) (c) Origin at time t = T obs −1 (the last observation point) (d) Visualization of relative 

coordinates(velocities) using arrows, each blue arrow is an input to the network at that timestep. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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rian i the positions (x i t , y 
i 
t ) for t ∈ 0 , . . . , T obs −1 are observed and

ositions ( ̂  x i t , ̂  y i t ) for t ∈ T obs , . . . , T pred−1 are predicted. We denote

ll the past positions of a pedestrian i with X i , the predicted fu-

ure positions with 

ˆ Y i and the real future positions of pedestrian i 

ith Y i . In essence, the problem of pedestrian trajectory prediction 

an be stated as: 

How to predict the future positions of pedestrians from their past 

rajectory with the lowest possible error? 

.2. Data pre-processing 

To effectively train a model and achieve low error rate, it is im- 

ortant to pre-process the data. The way this has been done is by 

ormalizing the input coordinates and applying data augmentation 

echniques. 

.2.1. Data normalization 

The input and target data of models in pedestrian trajectory 

rediction are coordinates, however, the origin point of these coor- 

inates is not specified. Therefore, one might ask: which coordinate 

ystem to use, as a form of data normalization? To answer this ques- 

ion, we have identified four data-preprocessing techniques: 

1. Absolute coordinates. With absolute coordinates, we refer to 

the naive approach: taking directly the coordinates from the 

datasets as they are. This is not a sensible approach since each 

scene has the origin point in a different position, and thus co- 

ordinates can lie in very distant intervals. 

2. Coordinates with the origin in the first observation point (in 

essence, we impose that: (x i 
0 
, y i 

0 
) = (0 , 0) ). To achieve this, from

each point in the sequence the first position, (x i 
0 
, y i 

0 
) , is sub-

tracted. In this way, the coordinates became scene-independent 

and do not have the same drawbacks as absolute coordinates. 

3. Coordinates with the origin in the last observation point (in 

essence, we impose that: (x i 
T obs −1 

, y i 
T obs −1 

) = (0 , 0) ). Similar to

the previous coordinates type, but with the difference that the 

subtracted position is (x i 
T obs −1 

, y i 
T obs −1 

) , which is the last position 

the network will observe. 

4. Relative coordinates (velocities). In this case instead of coordi- 

nates with a fixed reference system, the network is fed with 

relative displacements. It is to note that if relative displace- 

ments are scaled accordingly to the annotations per seconds, 

they represent the instantaneous velocities. 

An example of the same trajectory represented in different co- 

rdinate systems can be found in Fig. 1 . 
3 
.2.2. Data augmentation 

The following data augmentation techniques have been ana- 

yzed: 

1. Apply a random rotation to each trajectory. This technique 

should make the network learn patterns in a rotation-invariant 

manner. 

2. Mirror the trajectory on the x-axis or y-axis with a probabil- 

ity. No rotation applies a mirroring, therefore mirroring could 

enhance the effects or random rotations. 

3. Apply Gaussian noise with mean 0 and standard deviation σ to 

every point. Thus, at each time step the input coordinates are 

(x i t + a, y i t + b) , with a and b sampled at every time step from

a normal distribution with mean 0 and standard deviation σ . 

This approach should make the network more robust to small 

perturbations and imprecisions. 

An example of the three data augmentation techniques pro- 

osed can be found in Fig. 2 . 

.3. Convolutional model 

As shown by works such as [10] and [11] , CNN can be applied to

roblems involving sequences, such as machine translation or im- 

ge captioning, achieving competitive results in comparison with 

NN. It has also been shown by Nikhil and Morris in [9] , that in-

eed a convolutional model can be employed in pedestrian trajec- 

ory prediction. However, in their architecture it is not explained 

n detail how to go from 8 input positions to 12 output positions, 

nd how to transform output features in future positions. More- 

ver, their model does not outperform recurrent models such as 

oPhie [8] . 

For the reasons just stated we introduce a new convolutional 

rchitecture specifically designed for pedestrian trajectory predic- 

ion. In the next paragraph the general structure of the architecture 

s presented, and afterwards specific models implementing this ar- 

hitecture are presented, together with a detailed visualization of 

he best one. 

The proposed architecture takes 8 input positions ( (x i t , y 
i 
t ) for t

 0 , . . . , T obs −1 and for pedestrian i ) and outputs the future 12 po-

itions( ( ̂  x i t , ̂  y i t ) for t ∈ T obs , . . . , T pred−1 and for pedestrian i ), as it is

ommonly done in the pedestrian trajectory prediction literature. 

s a first step each input positions is embedded in 64-length fea- 

ure vector by a fully connected layer. After this first step, the input 

rajectory is represented by features vectors that are arranged in a 

4 × 8 matrix, in which 64 is the embedding dimension and 8 is 



S. Zamboni, Z.T. Kefato, S. Girdzijauskas et al. Pattern Recognition 121 (2022) 108252 

Fig. 2. The effects of rotation, mirroring and noise on a trajectory. The observed positions are in blue and the future positions are in green. (a) A pedestrian trajectory with 

the origin in the last observation point. (b) The same pedestrian trajectory rotated (of 45 degrees). (c) The same pedestrian trajectory rotated (of 45 degrees) an mirrored 

(on the x-axis) (d) The pedestrian trajectory with noise of σ = 0 . 1 applied to each point. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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he number of input positions. This matrix can be interpreted ei- 

her as a 64 one-dimensional channels with 8 features each, or as a 

ne channel 64 × 8 image. Thus, it is possible to apply both 1D and

D convolutions to this matrix. After the embedding, a first group 

f convolutions with padding is applied. The padding depends on 

he kernel size of the convolutions and it is employed to keep the 

umber of features in output the same as the number of features 

n input. This means that as many convolutional layers as wanted 

an be stacked at this step. The mismatch between the input posi- 

ions, which are 8, and the output positions, which are 12, require 

he introduction of specific layers to address this problem. There- 

ore, first an upsampling layer is applied to double the number of 

eatures from 8 to 16, and afterwards convolutional layers without 

adding are applied to reduce the number of features from 16 to 

2. Lastly, a second group of convolutions with padding is applied 

nd then a final fully connected layer transforms each feature vec- 

or in an output position. 

The presented convolutional architecture is scalable, in a sense 

hat there is no limit at the number of layers in the initial and final

onvolutions groups. It is also one-shot: in one pass all the output 

oordinates are generated, differently from recurrent models where 

sually one pass gives only the next position. 

Multiple implementations of this generic architecture are possi- 

le. The ones explored in this work are: 

1. 1D convolutional model. This is the most basic convolutional 

model and it interprets the 64 × 8 matrix created after the em- 

bedding layer as 64 one-dimensional channels with 8 features 

each. 

2. Positional embeddings model. As proposed by Gehring et al. 

[10] , to give to the network the clue of order in the input data,

the positional information of each input position is used. 

3. Transpose convolution model, which uses transpose convolu- 

tional layers instead of the upsampling layer followed by con- 

volutions without padding, to transition from 8 features to 12 

features. 

4. Residual connections model. As explored in [31] , residual con- 

nections help information and gradient flow, especially in very 

deep architectures. In this architecture variation, all convolu- 

tional layers are transformed in residual convolutional layers. 

5. 2D convolutional model. This model interprets the 64 × 8 ma- 

trix created after the embedding layer as one channels 64 × 8 

image. It is important to note that 2D convolutions usually in- 

crease the number of channels, thus, the final convolutional 

layer needs to decrease the channels number to one so that the 

final fully connected layer that computes the future positions 

can be applied. 2D convolutions have the advantage that they 

process multiple features over multiple timesteps, while 1D 
convolutions process only one feature over multiple timesteps. v

4 
As it is possible to see in Section 4 , the 2D convolutional model 

s the model that achieves the best results over multiple datasets, 

nd thus it represents the main contribution of this work from an 

rchitectural point of view. The detailed architecture of the 2D con- 

olutional model can be found in Fig. 3 . 

More information on training and hyperparameters for the all 

he convolutional models can be found on Section 4.3 . 

.4. Recurrent baselines 

To confront the results obtained using the convolutional model 

wo RNN baselines have been implemented. The first is a simple 

STM. This model embeds with a fully connected layer one po- 

ition (x i t , y 
i 
t ) into a 64-length feature vector, which is fed to the

STM cell and then two fully connected layers transform the out- 

ut of the cell into the next position (x i 
t+1 

, y i 
t+1 

) . The positions fed

ith t ∈ 0 , . . . , T obs −1 are the ground truth ones, while afterwards 

re the ones predicted by the network in the previous time step. 

he second baseline is an Encoder-Decoder (shorten to Enc-Dec in 

he tables) that uses LSTM cells both in the encoder and in the 

ecoder. The encoder has the same architecture as the LSTM base- 

ine except for the two fully connected layers in output which are 

issing, while the decoder has the exact same architecture as the 

STM baseline. 

More information on the exact architecture, training and hyper- 

arameters for the recurrent baselines can be found on Section 4.3 . 

.5. Addition of social information 

In addition to past trajectory, social information can be used as 

nput to the network. We analyzed three simple ways to represent 

ocial information, which use the occupancies of nearby pedestri- 

ns in the space. These techniques are: 

1. A square occupancy grid, introduced in Social LSTM [3] . 

2. A circular occupancy map, introduced in SS-LSTM [32] . 

3. An angular pedestrian grid, introduced in [7] . In this technique 

the angular space around a pedestrian is divided in a number 

of intervals and then the closest pedestrian in each direction, 

within a certain range, is computed. 

A visual example of these techniques can be seen in Fig. 4 . 

The square occupancy grid is represented with a matrix l ∗ l

here l is the number of cells on each side. The circular occupancy 

ap is represented with a matrix c ∗ 4 where c is the number of 

ircles. The angular pedestrian grid is represented by a vector of 

ength int(360 /d) , where d is the number of degrees an element 

f the vector represents. Social information which is not already in 

ector form is flattened to be used as an input to the models. 
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Fig. 3. Convolutional 2D model. For the fully connected layers in the parenthesis 

there are input and output dimensions. For convolutional layers in the parenthesis 

there are input channels, output channels and kernel size. All the convolutions have 

padding 2 so that the output dimension is the same as the input dimension. The 

exception are the two convolutions after the upsampling layer that have a padding 

of 1. Each layer has a corresponding batch normalization layer. The number of layers 

and the kernel size was determined empirically, over multiple experiments on the 

two datasets presented in Section 4 . 
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5 
Social information is integrated into the convolutional model 

nd into the Encoder-Decoder baseline. Both models require mini- 

al modifications: at each time step the social information is em- 

edded by another fully connected layer, and then obtained social 

eature vector is summed to the position feature vector. This new 

ector represents position and social information for that timestep 

nd it is then fed to the rest of the network. It is important to note

hat social information is available only during observation (there- 

ore in the Encoder-Decoder baseline the encoder process both so- 

ial and position information, while the decoder only processes po- 

ition information). 

. Results 

In this section we first describe the used datasets along 

ith the evaluation metrics and implementation details. Then, 

e present the experimental results obtained training the pro- 

osed architecture and the baselines with the different data pre- 

rocessing techniques previously presented. Finally, a comparison 

ith literature results on the two chosen datasets is displayed. 

.1. Data 

The ETH [33] and UCY datasets [34] are two publicly available 

atasets widely used in literature. Jointly they contain five scenes, 

wo from ETH (named ETH and Hotel), and three from UCY (named 

niv, Zara1 and Zara2). In total, they contain more than 1600 

edestrian trajectories, with pedestrian positions annotated every 

.4 s. The train and test are done with the leave-one-out-cross- 

alidation approach: a model is trained on four scenes and tested 

n the fifth, and this procedure is repeated five times, one for each 

cene. Since these two datasets are mainly used jointly from now 

nward the two datasets together will be referred to as the ETH- 

CY dataset. The raw pedestrian positions were downloaded from 

he Social GAN repository [35] (which was using them to compute 

elative coordinates), except for the ETH scene for which the origi- 

al dataset was used [33] . 

A more recent dataset is the Trajectory Forecasting Benchmark 

also known as TrajNet) [36] . It is a curated collection of datasets, 

omprising in total of more than 80 0 0 pedestrian trajectories. It 

erges the ETH, UCY, Stanford Drone Dataset [37] and PETS2009 

38] datasets. The Stanford Drone Dataset contributes to the ma- 

ority of the pedestrian tracks. One frame is annotated with pedes- 

rian positions every 0.4 s. The data has already been split in train- 

ng and test by the authors, and for the test set only the observed 

osition are available. The test error can be computed only by sub- 

itting the obtained predictions to the official dataset site [39] , 

here a leaderboard is also present. 

A scene from the UCY dataset and one from Stanford Drone 

ataset can be viewed in Fig. 5 . 

.2. Metrics 

It is common practice in literature to set T obs = 8 and T pred = 12 .

ork that do this include [3,4,8,9] and many others. Thus, for the 

ake of comparing with other models, the same setting is used in 

ll the experiments. 

The evaluation of predicted trajectories is done using metrics. 

he first (and most important) metric used is the Average Dis- 

lacement Error (ADE), which was introduced in [33] . The ADE is 

he Euclidean distance over all the predicted points and the ground 

ruth points from T obs to T pred−1 averaged over all pedestrians. The 

DE formula is the following: 

DE = 

∑ n 
i =1 

∑ T pred−1 

t= T obs 

∥
∥
∥ ˆ Y i t − Y i t 

∥
∥
∥

n (T pred − T obs ) 
(1) 
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Fig. 4. Analyzed methods to represent the occupancies of nearby pedestrians in the space. (a) Square occupancy grid. (b) Circular occupancy map. (c) Angular pedestrian 

grid. The current pedestrian is in black and the other pedestrians are in green. For (a) and (b) the occupied space is in red, while for (c) the free space is in red. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. On the left a frame of the Zara1 scene from the UCY [34] dataset, and on the right a frame of the death_circle scene from the Stanford Drone Dataset [37] . 
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he number of pedestrians is n , the predicted coordinates for 

edestrian i at time t are ˆ Y i t , the real future positions are Y i t and 

| is the Euclidean distance. 

The second metric used is the Final Displacement Error (FDE), 

hich was also introduced in [33] . The FDE is the Euclidean dis- 

ance between the predicted position and the real position at t = 

 pred−1 averaged over all pedestrians. The FDE formula is the fol- 

owing: 

 DE = 

∑ n 
i =1 

∥
∥
∥ ˆ Y i T pred−1 

− Y i T pred−1 

∥
∥
∥

n 

(2) 

.3. Implementation details 

For the ETH-UCY dataset, each network was trained for 60 

pochs, with a learning rate of 0.005 and a step scheduler with 

amma 0.5 and step 17. For the TrajNet dataset, each network was 

rained for 250 epochs, with a learning rate of 0.005 and a step 

cheduler with gamma 0.75 and step 35. The optimizer used was 

dam. The loss used was the ADE. For the baselines, the LSTM cell 

ize was 128, and the output dimension of the two fully connected 

ayers in output was 64 and 2 respectively. The basic 1D convo- 

utional model has the same number of layers as the 2D model 

n Fig. 3 . The differences lie in the number of channels, which 

s 64 for each layer, and the absence of batch normalization. For 

he Gaussian noise, the standard deviation is set to 0.05 and the 

ean to 0. For the mirroring, there is a 25% probability of mirror- 

ng a sample on one axis and a 50% probability of not applying any

irroring at all. For the social occupancy information, grid results 

re obtained using 10 cells per side ( l = 10 ) and each cell with a

ide of 0.5m. Occupancy circle results are obtained using 12 cir- 

les ( c = 12 ) 0.5m apart from each other. Angular pedestrian grid 

esults are obtained using 8 degrees per element ( d = 8 ). 
6 
.4. Results data pre-processing 

To show that results regarding data pre-processing are valid for 

oth convolutional and recurrent models, the LSTM baseline and 

 simple 1D convolutional model (with kernel size 3) have been 

rained with different data pre-processing techniques. 

Results obtained training the two models with different coordi- 

ate normalization approaches can be found in Table 1 . The best 

oordinate normalization is the one in which the origin is in the 

ast observation point, since it achieves the lowest ADE across all 

ve scenes on both the LSTM baseline and the 1D convolutional 

odel. This is because the last observation point is the most im- 

ortant one, since it is the most recent. Therefore, if the origin is 

laced in that position all the trajectory is seen through the lens 

f the most important point, and thus network better understands 

he whole trajectory. 

Regarding the data augmentation techniques, their effects are 

hown in Table 2 . Results show that mirroring (shorten to M in 

able 2 ) proved to be ineffective as a stand-alone technique. Gaus- 

ian noise(N in Table 2 ), instead, proved effective, but the lowest 

verage error achieved by a single data augmentation technique 

as obtained by random rotations(R in Table 2 ). We also tried all 

he possible data augmentation techniques combinations, however 

he ones including mirroring, such as MN, MR, MNR, showed no 

mprovements with respect to N, R and NR respectively (hence re- 

ults from MN, MR and MNR are omitted for brevity in Table 2 ).

he lowest average error is achieved by the NR (noise and rota- 

ions) variation, even if in some scenes the error actually increases 

f compared with only noise or only rotations. Thus, we can affirm 

hat mirroring is ineffective as a data augmentation technique both 

lone and together with other techniques. But most importantly, 

e can conclude that adding Gaussian noise with mean 0 to ev- 

ry point and applying random rotations to the whole trajectory 

ignificantly lowers the average prediction error. 
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Table 1 

Base 1D convolutional model and LSTM baseline trained with different coordinate normalization techniques. Regarding the 

naming system, ’abs’ stands for absolute coordinates, ’t0’ stands for coordinates with the origin in the first observation point, 

’tobs’ for coordinates with the origin in the last observation point and ’rel’ for relative coordinates. Results are in the format 

ADE / FDE and the best results (for each type of network) are in bold. 

ETH Hotel Univ Zara1 Zara2 Average 

Conv1D-abs 1.165 / 1.910 10.693 / 11.323 0.727 / 1.489 0.443 / 0.920 0.389 / 0.797 2.684 / 3.288 

Conv1D-t0 0.731 / 1.393 0.513 / 1.006 0.704 / 1.405 0.432 / 0.923 0.330 / 0.695 0.542 / 1.084 

Conv1D-tobs 0.694 / 1.381 0.568 / 1.241 0.667 / 1.371 0.411 / 0.893 0.324 / 0.694 0.533 / 1.116 

Conv1D-rel 0.791 / 1.492 0.533 / 1.107 0.699 / 1.386 0.403 / 0.864 0.327 / 0.696 0.550 / 1.109 

LSTM-abs 7.499 / 7.961 6.769 / 8.733 1.278 / 2.061 0.498 / 1.042 0.464 / 0.962 3.302 / 4.152 

LSTM-t0 0.779 / 1.509 0.546 / 1.101 0.729 / 1.452 0.425 / 0.915 0.318 / 0.702 0.559 / 1.136 

LSTM-tobs 0.734 / 1.432 0.501 / 1.053 0.687 / 1.430 0.424 / 0.920 0.330 / 0.719 0.535 / 1.111 

LSTM-rel 0.747 / 1.450 0.589 / 1.186 0.688 / 1.447 0.445 / 0.951 0.325 / 0.708 0.558 / 1.149 

Table 2 

Base 1D convolutional model and LSTM baseline trained with different data augmentation techniques. Regarding the 

naming system, N stands for Gaussian noise, R for random rotations and M for mirroring. The coordinates used are the 

ones with the origin in the last observation point (tobs). Results are in the format ADE / FDE and the best results (for 

each type of network) are in bold. 

ETH Hotel Univ Zara1 Zara2 Average 

Conv1D 0.694 / 1.381 0.568 / 1.241 0.667 / 1.371 0.411 / 0.893 0.324 / 0.694 0.533 / 1.116 

Conv1D-M 0.690 / 1.386 0.599 / 1.222 0.673 / 1.372 0.409 / 0.889 0.330 / 0.701 0.532 / 1.114 

Conv1D-N 0.592 / 1.220 0.445 / 1.011 0.669 / 1.375 0.424 / 0.903 0.337 / 0.720 0.493 / 1.046 

Conv1D-R 0.668 / 1.296 0.318 / 0.603 0.576 / 1.210 0.471 / 1.046 0.349 / 0.763 0.476 / 0.983 

Conv1D-NR 0.605 / 1.190 0.264 / 0.509 0.588 / 1.241 0.521 / 1.095 0.351 / 0.755 0.466 / 0.958 

LSTM 0.734 / 1.432 0.501 / 1.053 0.687 / 1.430 0.424 / 0.920 0.330 / 0.719 0.535 / 1.111 

LSTM-M 0.741 / 1.440 0.495 / 1.041 0.679 / 1.421 0.427 / 0.925 0.331 / 0.721 0.535 / 1.110 

LSTM-N 0.621 / 1.249 0.421 / 0.865 0.698 / 1.447 0.428 / 0.917 0.334 / 0.712 0.500 / 1.038 

LSTM-R 0.689 / 1.331 0.305 / 0.576 0.549 / 1.199 0.439 / 0.971 0.329 / 0.728 0.462 / 0.961 

LSTM-NR 0.581 / 1.168 0.259 / 0.503 0.578 / 1.241 0.463 / 1.022 0.346 / 0.748 0.446 / 0.936 

Table 3 

Convolutional models variants and baselines compared. Regarding the naming system, Ks denotes the kernel size, Pe stands 

for Positional embeddings, Rc for Residual connections and Tc for transpose convolutions. These networks are trained with 

random rotations, Gaussian noise and coordinates with the origin in the last observation point(tobs-NR). Results are in the 

format ADE / FDE and the best results are in bold. 

Zara2 Average 

Conv1D-Ks3 0.605 / 1.190 0.264 / 0.509 0.588 / 1.241 0.521 / 1.095 0.351 / 0.755 0.466 / 0.958 

Conv1D-Ks7 0.560 / 1.149 0.246 / 0.427 0.590 / 1.249 0.478 / 1.046 0.346 / 0.737 0.444 / 0.931 

Conv1D-Ks7 + Pe 0.568 / 1.125 0.248 / 0.467 0.594 / 1.257 0.459 / 0.990 0.369 / 0.789 0.447 / 0.926 

Conv1D-Ks7 + Rc 0.606 / 1.197 0.267 / 0.517 0.595 / 1.254 0.451 / 0.989 0.356 / 0.762 0.455 / 0.944 

Conv1D-Ks7 + Tc 0.560 / 1.121 0.245 / 0.470 0.589 / 1.251 0.516 / 1.073 0.349 / 0.741 0.452 / 0.931 

Conv2D-Ks5 0.559 / 1.114 0.240 / 0.464 0.581 / 1.225 0.456 / 0.993 0.347 / 0.751 0.436 / 0.909 

LSTM 0.581 / 1.168 0.259 / 0.503 0.578 / 1.214 0.463 / 1.022 0.347 / 0.748 0.446 / 0.936 

EncDec 0.585 / 1.170 0.246 / 0.491 0.589 / 1.245 0.467 / 1.023 0.360 / 0.737 0.449 / 0.938 
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As Tables 1 and 2 clearly show, results on data pre-processing 

echniques are valid both for convolutional and recurrent models, 

nd this demonstrates that these findings are applicable to a mul- 

itude of architectures. In fact, the same conclusions can be ob- 

ained training the Encoder-Decoder baseline and other convolu- 

ional model variations (results omitted for brevity). 

It is also interesting to note that the LSTM baseline together 

ith data augmentation outperformed the 1D convolutional model 

ith kernel size 3, however this is not the case with other convo- 

utional models, as Section 4.5 shows. 

.5. Results convolutional model variations and baselines 

Results obtained with different convolutional model variations 

and baselines) are shown in Table 3 . These results suggest that 

odels with a bigger kernel size are able to generate more refined 

redictions, since the 1D convolutional model with kernel size 7 

btains better results than the same model with kernel size 3. The 

ntuition behind why a bigger kernel size might be better is that 

he more information a kernel can process the better it can in- 

erpret complex behaviours in the trajectory. This idea still applies 

hen the 1D convolution model is confronted with the 2D con- 
7 
olution model. In the first, the kernel looks at the same feature 

n multiple timesteps. In the second, instead, the kernel looks at 

ultiple features in multiple timesteps and thus it process more 

nformation and generates better predictions. However, this intu- 

tion has diminishing returns: experiments with the 2D convolu- 

ional model using kernel size 7 generated slightly worst results 

ompared to the same 2D model with kernel size 5. 

Regarding other convolutional model variations, using posi- 

ional embedding and transpose convolutions proved to be ineffec- 

ive. Moreover, adding residual connections also did not improve 

esults, since the optimal number of convolutional layers is quite 

imited (7, as Fig. 3 shows) and thus residual connections are not 

eeded. 

Table 3 also offers a comparison between the baselines and 

he proposed convolutional models. The 1D convolutional model 

s able and outperform the recurrent baselines only when using a 

igger kernel size, while the best model is the 2D convolutional 

ith kernel size 5. Thus, we can conclude that it is indeed pos- 

ible to develop a convolutional model capable of outperforming 

ecurrent models in pedestrian trajectory prediction. However, it is 

nteresting to note that the difference in average error between the 

ecurrent baselines and the convolutional models is not ample. 
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Table 4 

2D convolutional models with social information comparison. Regarding the naming system, Sog stands for Square occupancy 

grid, Com for Circular occupancy map and Apg for Angular pedestrian grid. These networks are trained with random rota- 

tions, Gaussian noise and coordinates with the origin in the last observation point(tobs-NR). Results are in the format ADE / 

FDE and the best results are in bold. 

ETH Hotel Univ Zara1 Zara2 Average 

Conv2D + Sog 0.558 / 1.118 0.233 / 0.455 0.604 / 1.269 0.464 / 1.005 0.342 / 0.740 0.440 / 0.915 

Conv2D + Com 0.561 / 1.122 0.235 / 0.447 0.590 / 1.240 0.461 / 0.991 0.348 / 0.746 0.439 / 0.910 

Conv2D + Apg 0.567 / 1.109 0.235 / 0.449 0.589 / 1.231 0.464 / 0.997 0.337 / 0.719 0.438 / 0.901 

Conv2D 0.559 / 1.114 0.240 / 0.464 0.581 / 1.225 0.456 / 0.993 0.347 / 0.751 0.436 / 0.909 

Fig. 6. Example of gradient flow in the 2D convolutional model that uses a square 

occupancy grid to represent social information. On the x axis there are the layers of 

the network, and on the y axis the gradient (mean and max on a logarithmic scale) 

that is computed during the backpropagation after a mini-batch. (a) Position em- 

bedding layer (b) Square occupancy grid embedding layer (c) Convolutional layers 

(d) Final fully connected layer. 
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.6. Results using social information 

Results of Table 4 , in which the 2D convolutional model is 

rained with social information, are unexpected: the addition of so- 

ial information proved to be ineffective on the ETH-UCY dataset. 

imilar results are also obtained with the Encoder-Decoder base- 

ine: architectures that use the proposed social occupancy infor- 

ation methods are not able to outperform the same architectures 

ithout social information. This is indicated by the fact that net- 

orks with social information obtain very similar results to net- 

orks without it, as occupancy information would not be relevant. 

pon further investigation, it was found that the average gradient 

ow in the social information embedding weights of the networks 

as around 50–100 times smaller than the average gradient flow 

n the position embedding weights. This might suggest that for the 

etwork there is very little correlation between the real future tra- 

ectory and social information, and thus this kind of information 

s almost ignored. An example of the gradient flow in the network 

an be found in Fig. 6 . 

Results on the addition of social information are to be consid- 

red mainly as an exploratory analysis. Much more can be done 

and has been done) to include social information as input to a 

odel in pedestrian trajectory prediction. What our results show 

s that the specific approaches that use occupancy information that 

e tested, in combination with the presented architectures, failed 

o improve results on the ETH-UCY dataset. 

.7. Comparison with literature on the ETH-UCY dataset 

The following models from literature have been chosen to do a 

omparison with the results obtained on the ETH-UCY dataset: 
8 
• Linear Velocity, a linear regressor that estimates linear param- 

eters by minimizing the least square error, taken from Gupta 

et al. [4] . 
• A simple LSTM, trained by Gupta et al. [4] ; 
• Social-LSTM [3] , trained by Gupta et al. [4] ; 
• Convolutional Neural Networks for trajectory prediction 

(shorten to CNN in the table) [9] , convolutional model devel- 

oped by Nikhil and Morris; 
• Social-GAN [4] , a generative model that uses social information 

with relative coordinates as data normalization; 
• SoPhie [8] , a generative model that uses both social and image 

information; 
• Stochastic Trajectory Prediction with Social Graph Network 

(Stochastic GNN) [23] , generative model that uses social infor- 

mation and GNN; 
• MCENET [21] , generative model based on a CVAE that uses both 

social and image information; 
• Conditional Generative Neural System (CGNS) [22] , generative 

model based on a CVAE that uses both social and image infor- 

mation; 
• Social-BiGAT [19] , generative model that uses both social and 

image information; 
• SR-LSTM [40] , model based on the state refinement of the LSTM 

cells of all the pedestrians in the scene to take into account for 

social interaction, which uses both coordinates with the origin 

in the last observation point and random rotations as data pre- 

processing; 
• Social Spatio-Temporal Graph Convolutional Neural Network 

(STGCNN) [26] , generative model that uses social information 

and GNN; 
• STGAT [24] , generative model that uses social information and 

GNN; 
• Trajectron++ [41] , a graph-structured recurrent model that also 

uses map information, results are from the deterministic most 

likely version. 

It is to note that since generative models have stochastic out- 

uts, in literature they are evaluated using the best-of-N method. 

ith this approach, N samples trajectories (for each input trajec- 

ory) are generated, and the ADE and FDE are evaluated only on 

he generated path with the lowest error. The value of N usually 

et to 20 in literature. 

The result comparison for the ETH-UCY dataset can be found 

n Table 5 . In there, the 2D convolutional model achieves the low- 

st error across the whole ETH dataset and an average error on 

he whole ETH-UCY dataset comparable to the STGAT and STGCNN 

odels. On the UCY dataset, however, other models surpass the 

D convolutional model such as Trajectron++. This might be due 

o the fact that in the ETH dataset there is less pedestrian density, 

hile in the UCY dataset there are more pedestrians per scene and 

hus social interaction, which is not taken into account by the 2D 

onvolutional model, is more important. The recurrent baselines 

lso achieve a very low error, especially if our LSTM-tobs-NR is 

ompared to the LSTM trained by Gupta et al. [4] , thanks to the 

mployed data pre-processing techniques. 
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Table 5 

Comparison with literature results on the ETH-UCY dataset. The results of models that have a reference have been taken directly from the publica- 

tion. Generative models evaluated with the best-of-N approach with N = 20 are denoted with ∗, while models developed in this work are denoted 

with † . Results are in the format ADE / FDE and the best results are in bold. 

ETH Hotel Univ Zara1 Zara2 Average 

Linear Velocity, from Gupta et al. [4] 1.33 / 2.94 0.39 / 0.72 0.82 / 1.59 0.62 / 1.21 0.77 / 1.48 0.79 / 1.59 

Social LSTM [3] , from Gupta et al. [4] ) 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54 

LSTM (from Gupta et al. [4] ) 1.09 / 2.41 0.86 / 1.91 0.61 / 1.31 0.41 / 0.88 0.52 / 1.11 0.70 / 1.52 

CNN [9] 1.04 / 2.07 0.59 / 1.17 0.57 / 1.21 0.43 / 0.90 0.34 / 0.75 0.59 / 1.22 

Social GAN ∗ [4] 0.81 / 1.52 0.72 / 1.61 0.60 / 1.29 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18 

Sophie ∗ [8] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15 

Stochastic GNN ∗ [23] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.49 / 1.01 

MCENET ∗ [21] 0.75 / 1.61 0.37 / 0.68 0.58 / 1.18 0.33 / 0.65 0.23 / 0.49 0.49 / 0.98 

CGNS ∗ [22] 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97 

Social-BiGAT ∗ [19] 0.69 / 1.29 0.48 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00 

SR-LSTM [40] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94 

Social STGCNN ∗ [26] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75 

STGAT ∗ [24] 0.65 / 1.12 0.35 / 1.12 0.52 / 1.10 0.34 / 0.69 0.29 / 0.60 0.43 / 0.83 

Trajectron + [41] 0.71 / 1.66 0.22/ 0.46 0.44 / 1.17 0.30 / 0.79 0.23 / 0.59 0.38 / 0.93 

LSTM-tobs-NR † 0.581 / 1.168 0.259 / 0.503 0.578 / 1.214 0.463 / 1.022 0.346 / 0.748 0.446 / 0.936 

EncDec-tobs-NR † 0.585 / 1.170 0.246 / 0.491 0.589 / 1.245 0.467 / 1.023 0.360 / 0.771 0.449 / 0.938 

Conv1D-tobs-NR-Ks7 † 0.560 / 1.190 0.246 / 0.472 0.590 / 1.249 0.478 / 1.046 0.346 / 0.737 0.444 / 0.926 

Conv2D-tobs-NR-Ks5 † 0.559 / 1.114 0.240 / 0.464 0.581 / 1.225 0.456 / 0.993 0.347 / 0.751 0.436 / 0.909 
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Table 6 

Comparison of different models on the TrajNet dataset. Mod- 

els from this work are trained with random rotations, Gaussian 

noise and coordinates with the origin in the last observation 

point(tobs-NR) and denoted with † . Best model in bold. 

ADE FDE 

Social LSTM [3] 0.675 2.098 

Social GAN [4] 0.561 2.107 

Location-Velocity Attention [16] 0.438 1.449 

Social Forces [1] (from Becker et al. [42] ) 0.371 1.266 

SR-LSTM [40] 0.370 1.261 

EncDec-tobs-NR + Sog † 0.369 1.231 

Conv2D-tobs-NR-Ks5 + Apg † 0.366 1.223 

Conv1D-tobs-NR-Ks7 † 0.365 1.220 

EncDec-tobs-NR + Apg † 0.364 1.218 

EncDec-tobs-NR † 0.362 1.220 

Conv2D-tobs-NR-Ks5 + Sog † 0.360 1.215 

RED (v3) [42] 0.360 1.201 

LSTM-tobs-NR † 0.356 1.212 

Conv2D-tobs-NR-Ks5 † 0.352 1.192 

Fig. 7. ADE distribution obtained testing the 2D convolutional model on the Zara1 

scene. The average is 0.456, with a standard deviation of 0.370. The biggest value is 

2.92. 
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.8. Comparison with literature on the TrajNet dataset 

The following models from literature have been chosen to do a 

omparison with the results obtained on the TrajNet dataset: 

• Social LSTM [3] , results are taken from the TrajNet site; 
• Social GAN [4] , results are taken directly from the TrajNet site; 
• Location-Velocity Attention [16] , model that uses location and 

velocity in two different LSTM with an attention layer between 

the two cells, the results are taken directly from the paper; 
• Social Forces model [1] , with results taken from the TrajNet site 

and from Becker et al. [42] ; 
• SR-LSTM [40] , the results are taken directly from the TrajNet 

site; 
• RED (v3 from the TrajNet site), the best model from Becker 

et al. [42] . 

In particular, a detailed comparison with RED [42] can high- 

ight in which ways our approach differs from previous literature 

nd consequently how it is able to achieve a lower error. Starting 

rom the architectural point of view, RED is a recurrent encoder 

ith a dense multi-layer perceptron stacked on top. Our LSTM- 

obs-NR has a similar architecture, since RED also uses a LSTM cell. 

ur convolutional model, on the other hand, has a completely dif- 

erent architecture since it uses convolutional layers and it is not 

ecurrent. Regarding data normalization, RED uses relative coor- 

inates, while our models use coordinates with the origin in the 

ast observation point, since we empirically showed (in Table 1 ) 

hat they produce better results. However, the biggest difference 

etween our approach and RED is in the data augmentation. The 

nly data augmentation in RED is the reversing of the trajectories, 

hich doubles the amount of possible training data. However, ap- 

lying random rotations and noise as we propose can transform a 

ingle trajectory in virtually infinite ways, achieving more diversity 

n the training data and leading to a reduced error. 

The result comparison for the TrajNet dataset can be found in 

able 6 . 

We can affirm that the 2D convolutional model achieves state- 

f-the-art performances on the TrajNet dataset, making it the 

odel with the lowest ADE on the biggest publicly available 

ataset for pedestrian trajectory prediction. Our LSTM-tobs-NR also 

chieves a very low error, lower than RED thanks to the proposed 

ata pre-processing techniques. Finally, also on the TrajNet data 

he analyzed techniques for modelling social interaction proved to 

e ineffective (results using a circular occupancy map are missing 
9 
n Table 6 because their results are very similar to the square oc- 

upancy grid). In fact, both the 2D convolutional model and the 

ncoder-Decoder baseline outperform their variants that use social 

nformation. 



S. Zamboni, Z.T. Kefato, S. Girdzijauskas et al. Pattern Recognition 121 (2022) 108252 

5

i

t

t

fi

a

i

t

5

b

e  

t

E

t

i

a

Table 7 

Comparison of the computational test time of different models on 

an Nvidia Quadro 10 0 0. 

batch size = 1 batch size = 32 

Convolutional 2D model 0.0033s 0.00017s 

(155k parameters) per element per element 

LSTM baseline 0.0207s 0.00064s 

(106k parameters) per element per element 

Encoder-Decoder baseline 0.0118s 0.00043s 

(208k parameters) per element per element 

c

a

p

f

m

n

s

m

t

F

i

d
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. Discussion 

The ADE and the FDE are not the only aspects that can be taken 

nto consideration when evaluating a pedestrian trajectory predic- 

ion model. Other characteristics are the computational time and 

he number of hyperparameters. These aspects are discussed in the 

rst part of this section. 

Additionally, the accuracy of a model can depend on the situ- 

tion it is trying to predict. Thus, for future improvements, it is 

mportant to understand in which scenarios the proposed architec- 

ure fails. This topic is discussed in the second part of this section. 

.1. Convolutional model and recurrent models comparison 

Analyzing the recurrent baselines and the convolutional model 

eyond their quantitative results, three main differences have 

merged. The first is computation time. As can be seen in Table 7 ,

he convolutional model is more than three times faster than the 

ncoder-Decoder baseline and more than four times faster than 

he LSTM baseline at test time. These results are also valid dur- 

ng training time. Thus, the convolutional model is not only more 

ccurate but also more efficient than the recurrent baselines. 
ig. 8. (a) The worst prediction of the 2D convolutional model on the Zara1 scene: a 

naccurate because in the observed positions there are no clues of a turn. (b) The predictio

ifferent direction the network is able to understand that the pedestrian is turning. (c) Th

d) After other three frames the prediction is very similar to the ground truth. 

10 
The second difference between the recurrent models and the 

onvolutional model is the number of hyperparameters. The LSTM 

nd Encoder-Decoder baselines have a very small number of hyper- 

arameters (embedding size, hidden state length and the output 

ully connected layers dimension). Meanwhile, the convolutional 

odel has a bigger number of hyperparameters (embedding size, 

umber of layers, number of channels for each layer and kernel 

ize for each layer). Therefore, the convolutional model requires 

ore hyperparameter tuning than the recurrent models. 

The third difference is flexibility. A recurrent model can be 

rained to observe, for example, 6 positions and predict the next 16 
person is going down and then changes direction very sharply. The prediction is 

n on the same person one frame (0.4 s) after: with only one position pointing in a 

e trajectory after other three frames: the prediction aligns even more with reality. 



S. Zamboni, Z.T. Kefato, S. Girdzijauskas et al. Pattern Recognition 121 (2022) 108252 

w

r

b

t

b

a

p

i

f

m

m

l

5

s

s

w

c

m  

e

t

 

r

s

t

m

6

t

t

g

p

T

c

g

p

t

a

a

o

i

r

d

t

s

a

r

t

c

i

w

f

c

i

t

d

d

i

D

A

p

t

o

R

 

 

 

 

 

 

 

 

[  

 

ithout any change in the architecture. It is also possible to train a 

ecurrent model to give predictions after observing a variable num- 

er of inputs without any change in the architecture. This is not 

rue in the case of the convolutional model. To change the num- 

er of input or output positions in the convolutional model some 

djustments need to be done, mainly revolving around the upsam- 

ling layer and the convolutional layers without padding. Regard- 

ng using a convolutional model with a variable number of inputs 

or pedestrian trajectory prediction, that is an open challenge and 

ight be an interesting direction for the future work. 

We can therefore conclude that the convolutional model is 

ore efficient and accurate than the recurrent baselines, but it is 

ess flexible and requires more hyperparameter tuning. 

.2. Failure cases 

In some of the applications of pedestrian trajectory prediction, 

uch as autonomous driving, is important to not only to have a 

mall average error but also to have a small maximum error. How 

ell the proposed 2D convolutional model satisfies this constraint 

an be seen looking at the distribution of the Average Displace- 

ent Error in Fig. 7 . There, it is possible to note that the prediction

rror distribution resembles a Gaussian curve with a long tail. 

Analyzing the poor predictions in the long tail we discovered 

hree scenarios in which the prediction error is consistently high: 

1. Sharp turns. In this case, the typical scenario is the following: 

a person is going straight and then does a 90-degree turn be- 

cause the road was either turning or forking. An example of 

such behaviour can be seen in Fig. 8 . In scenarios like this, it

is reasonable to assume that only models including spatial in- 

formation can predict the turn reliably. What models that do 

not include spatial information can learn is to adapt quickly to 

sharp changes in trajectory, as shown in Fig. 8 . 

2. Pedestrians stopping. In this case, it is often difficult to under- 

stand the reasons for this kind of behaviour: a person could 

stop to look at some shops windows, to check before crossing 

the street, to greet some friends, or to simply wait for someone 

else. Spatial information could help on some of these scenarios, 

but not in all. 

3. Pedestrians that resume walking after stopping. This kind of be- 

haviour happens after the previous one, and it is even more 

difficult to predict. If a person is still it is very difficult to un- 

derstand the exact moment when it will resume moving. The 

safest assumption is that the pedestrian will continue to remain 

still, which leads to a very high error if the network observation 

ends a few moments before the person starts walking. 

Analyzing these three scenarios it is possible to affirm that, to 

educe instances in which the error is very high, the inclusion of 

patial information could be very effective. Consequently, as a fu- 

ure work, the inclusion of spatial information in the convolutional 

odel appears to be a promising direction. 

. Conclusion 

In this work, we first confronted various data pre-processing 

echniques for pedestrian trajectory prediction. We found out that 

he best combination is obtained using coordinates with the ori- 

in in the last observation point as data normalization and ap- 

lying Gaussian noise and random rotations as data augmentation. 

his solution proved to be effective in multiple architectures, both 

onvolutional and recurrent, demonstrating that these findings are 

eneral thus can benefit future works in the pedestrian trajectory 

rediction field. 

We also proposed a new convolutional model for pedestrian 

rajectory prediction that uses 2D convolution. This new model is 
11 
ble to outperform the recurrent baselines, both in average error 

nd in computational time, and it achieves state-of-the-art results 

n the ETH and TrajNet datasets. 

As an additional exploratory analysis, we also presented empir- 

cal results on the inclusion of social occupancy information. Our 

esults suggest that the inclusion of social occupancy information 

oes not reduce the prediction error. 

Accompanying these quantitative results, a comparison between 

he convolutional and recurrent models was presented. Our analy- 

is concluded that the convolutional models can be more efficient 

nd accurate than the recurrent baselines, but are less flexible and 

equire more the hyperparameter tuning. 

Moreover, an analysis of the most common failure scenarios in 

he predictions has been carried out, pointing out that the most 

ommon scenarios with high prediction error are pedestrians do- 

ng sharp turns, pedestrians stopping and pedestrians that resume 

alking after stopping. 

Interpreting these finding one can see as a promising direction 

or future work the inclusion of spatial information as input to the 

onvolutional model, to address the pedestrians turning. Another 

nteresting future direction is a better inclusion of social informa- 

ion using more advanced techniques, that should be specifically 

esigned to be applied to a convolutional architecture. A relevant 

ataset to evaluate these findings could be TrajNet++ [43] , which 

s specifically designed to assess social interaction and collisions. 
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