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Abstract—Neural networks are used for different machine
learning tasks, such as spatial time-series forecasting. Accurate
modelling of a large and complex system requires large datasets
to train a deep neural network that causes a challenge of scale as
training the network and serving the model are computationally
and memory intensive. One example of a complex system that
produces a large number of spatial time-series is a large road
sensor infrastructure deployed for traffic monitoring. The goal of
this work is twofold: 1) To model large amount of spatial time-
series from road sensors; 2) To address the scalability problem
in a real-life task of large-scale road traffic prediction which is
an important part of an Intelligent Transportation System.

We propose a partitioning technique to tackle the scalability
problem that enables parallelism in both training and prediction:
1) We represent the sensor system as a directed weighted graph
based on the road structure, which reflects dependencies between
sensor readings, and weighted by sensor readings and inter-
sensor distances; 2) We propose an algorithm to automatically
partition the graph taking into account dependencies between
spatial time-series from sensors; 3) We use the generated sensor
graph partitions to train a prediction model per partition. Our
experimental results on traffic density prediction using Long
Short-Term Memory (LSTM) Neural Networks show that the
partitioning-based models take 2x, if run sequentially, and 12x,
if run in parallel, less training time, and 20x less prediction
time compared to the unpartitioned model of the entire road
infrastructure. The partitioning-based models take 100x less
total sequential training time compared to single sensor models,
i.e., one model per sensor. Furthermore, the partitioning-based
models have 2x less prediction error (RMSE) compared to both
the single sensor models and the entire road model.

Index Terms—spatial time-series, deep learning, LSTM

I. INTRODUCTION

Deep neural networks (NN) have shown promising results
for different machine learning and data mining tasks, such as
classification and prediction, in various application domains.
Modelling of a large complex system requires a large dataset
to train a deep NN with many parameters [1]. At scale,
training deep NNs is computationally and memory intensive.
Partitioning and distribution is a general approach to the
challenge of scale in NN-based modelling. A number of
methods have been proposed to achieve scalability, such as
distributed and collaborative machine learning [2], [3] that
rely on dividing the problem into smaller tasks. These tasks
comprise of smaller models working on subsets of data.

In this work, we address the scalability problem in large-
scale spatial time-series forecasting. Spatial time-series are

multiple time-series that correspond to different spatial loca-
tions [4]. There are dependencies between spatial time-series
that need to be taken into account when building an NN-based
prediction model. Our approach to tackle the scalability prob-
lem is to partition time-series data while preserving essential
dependencies between them. Our application domain is the
analysis of road traffic data collected by road infrastructure
sensors and modelling of traffic flow behavior for the task of
traffic prediction. Accurate traffic predictions can further help
in route planning, traffic congestion reduction, air pollution
reduction, infrastructure planning, and other tasks.

The number of sensors and the number of measurements
from the sensors are increasing. For example, the number of
infrastructure sensors in the Motorway Control System (MCS)
deployed on highways in Stockholm and Gothenburg, Sweden,
has increased from about 800 in 2005 to more than 2000 in
2016. The number of measurements has also increased from
400 million to about 1 billion per year, as shown in Fig. 1.

Sensor data are spatial time-series, and having a large num-
ber of sensors causes a scalability problem in traffic time-series
forecasting. Moreover, often there are real-time requirements
for traffic data analysis and forecasting that put constraints
on the inference time. This requires a scalable solution for
processing a large amount of data with low-latency. In some
cases, to achieve scalability, the data is partitioned in order to
perform mining or modelling tasks in parallel.

Careless partitioning causes degradation in the model ac-
curacy. For example, too small partitions might not provide
enough information to train the model; Placing unrelated
data, such as traffic data from unconnected road segments,
in the same partition might negatively affect the accuracy or
complexity of the model. Careful partitioning is especially im-
portant for grouping time-series data of multiple sensors (spa-
tial time-series), because of dependency between the sensor
readings. One example of such a dependency is that a moving
car counted by one sensor will be counted by the next sensor
in the flow direction. Another example is that a traffic queue
growing in the opposite direction of the traffic flow causes a
slowdown of cars and, as a consequence, dependency between
sensor readings. The dependency is strong between sensors
which are closely placed and there is a path between them;
the dependency is weak between sensors which are far apart
or have no path between them. Taking these dependencies into
account is important for the partitioning of sensors, meaning
that a partition should include correlated sensors.978-1-7281-0858-2/19/$31.00 © 2019 IEEE
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Fig. 1: Number of sensors’ measurements over years.

In our previous work [5], we have found that partition-
ing the sensors by grouping them based on area results
in low prediction accuracy because a partition might cover
sensors on unconnected road segments or sensors with long
distances between them, hence with uncorrelated or weakly
correlated data. In order to group only relevant correlated
sensors, to reduce the complexity and improve the accuracy
of the prediction model, we performed manual partitioning
by checking the locations of the sensors and grouping the
related sensors located on the same road paths. Our focus was
on accuracy within a few manually selected partitions, not
the entire network, because it was not feasible to manually
partition the entire traffic network. In our other work [6] on
road congestion detection, we have found that representing the
sensor infrastructure in the form of a weighted graph allows
to capture inter-dependencies and spatial relations between
sensors and to use graph processing in traffic analysis.

In this work, we propose a novel partitioning algorithm to
automate partitioning of sensor networks that shows similar
results, in terms of prediction accuracy, compared to manual
partitioning used in our previous work. We show that the deep
NN models using the partitioned network for the prediction
can scale to cover large traffic networks with improved per-
formance in terms of compute time and accuracy.

In this work, we address the following research questions:
How to partition spatial time-series to preserve dependence
among them? Which and how many spatial time-series do we
take into account for a fast and accurate forecast?

Contributions: The contributions of our work are:
• Representation: We propose to represent a complex

system as a directed weighted graph that captures the
dependencies between spatial time-series generated by
components of the system, and thus, enables graph par-
titioning that yields correlated component groups. We
use our approach in representing the road infrastructure
sensors as a directed weighted graph that reflects spatio-
temporal dependencies among sensor readings in order to
partition the sensor graph into correlated sensor groups.

• Partitioning: We propose a novel graph partitioning
algorithm to find groups of correlated sensors for a given
prediction time horizon. The size of a partition is deter-
mined in such a way that it covers all correlated sensors
reachable within the time horizon by a car travelling at the
average speed in each segment of the partition, i.e., the

sensors affected by the same traffic stream are placed in
the same partition if the travel time between them lies
within the prediction horizon. This allows partitioning
of a large sensor network while preserving dependencies
between spatial time-series generated by the sensors.

• Scalability: We use our proposed partitioning technique
to tackle the scalability problem by enabling parallelism
in both training and prediction. After partitioning the
sensor network graph, we train a prediction model for
each partition. We show that our approach can scale to
cover large traffic networks with improved performance
in terms of the compute time and accuracy.

• Comparison: We evaluate our approach with various
partition sizes and prediction horizons. We also compare
our partitioning-based models with single sensor models,
i.e., one model trained per sensor, and the entire sensor
infrastructure model, i.e., one model trained for the entire
sensor network. The comparison is done in order to find
a better model in terms of performance (speed of training
and prediction) and accuracy (prediction error).

Main Findings: Our experimental results show that using
time-series prediction models on a related group of sensors
yields better performance in terms of training and prediction
time and also gives better accuracy compared to the models
of a single sensor or the entire sensor network. With the case
study of modelling of a large sensor network considered in this
work, we have found that the partitioning technique that takes
into account the dependencies between spatial time-series
generated by the sensors is able to handle large scale data
more efficiently compared to training single-sensor models or
training a single model for the network of all sensors.

II. PRELIMINARIES
A. Traffic Flow Theory

Traffic flow theory [7] focuses on understanding the behav-
ior of traffic on the road by analyzing the interactions between
the transportation infrastructure and its users. Traffic flow
theory is primarily used by transportation engineers to analyze
and optimize the flow of traffic for designing, constructing and
maintaining the road infrastructure.

Traffic flow theory uses three main measures, namely, traffic
flow, speed, and density to characterize the traffic performance.
These measures are collected from sensors placed on roads or
vehicles monitoring the traffic flow and drivers’ behavior. The
aforementioned traffic measures can be defined as follows: 1)
Traffic flow, f , is the number of vehicles passing through a
particular point on the road per time interval. It is commonly
denoted as vehicles per hour (veh/hr). 2) Speed, v, is the
distance covered by a vehicle per time interval. It is denoted
as kilometers per hour (km/hr). 3) Density, d, is the number
of vehicles per distance unit. It is useful in analyzing the
congestion on a road. Density is represented as vehicles per
kilometer (veh/km). Empirical data shows the relation between
these variables as d = f/v. In our experiments, we predict and
use traffic density for training the prediction model because
of its importance for road congestion detection.
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B. Long Short-Term Memory NN-Based Prediction Model
Traditional time-series forecasting techniques for traffic

prediction, including flow theory based models and statistical
techniques, such as Bayesian analysis [8], Markov chains [9]
and ARIMA [10], have been replaced by neural networks. NNs
perform better for time-series forecasting than the traditional
techniques because the latter are incapable of handling missing
and multidimensional data. NNs have been employed in fore-
casting time-series data [11], [12]. In particular, Long Short
Term Memory (LSTM) networks [13] have shown promising
results for traffic prediction due to their deep hierarchical
structure which enables extraction of non-linear and stochastic
characteristics of the traffic data [14], [15].

In this work, we use LSTM-based prediction models. LSTM
is a type of Recurrent Neural Network (RNN) architecture that
is capable of learning long term trends in the data. In our
previous work [5], we compared a 2 layered stacked LSTM
based architecture with various statistical and neural networks
based models. The stacked architecture containing 2 layers
gave better accuracy compared to other models.

Complexity: The basic LSTM architecture consists of three
layers: the input layer, LSTM (hidden) layer, and output layer.
Data from the input layer is fed to the LSTM layer which
contains memory blocks comprising of memory cells with self-
connections and gates. These self-connections are from cell’s
output unit to the input unit and gates. These gates, namely the
input, output and forget gate control the flow of data across
these cells which represent the state of LSTM. The output
units of cells are connected to the output layer.

The computational complexity of an LSTM network per
time stamp and weight is O(1) [13]. Therefore, the complete
learning complexity of LSTM with a total of W number of
parameters is O(W ). W is computed by the equation [16]:

W = n2
c × 4 + ni × nc × 4 + nc × no + nc × 3 (1)

Here, nc is the number of memory cells, ni is the number of
input units and no is the number of output units in the LSTM
layer. A large number of input, output and memory units can
increase the computational complexity of LSTM.

C. Data Representation for Spatial Time-Series Forecasting
Time-series data collected from road traffic sensors contain

both spatial and temporal dependencies. To capture these
dependencies, we need to take into account the sensor’s
previous readings, the readings of neighbouring sensors and
neighbouring sensors’ previous readings. Therefore, we model
the sensor data using Equation 2, which represents the time-
series dependencies in space and time. Using this equation,
we consider that the predicted reading of a sensor Si at time
t+ 1 is given by the following equation:

Si,t+1 = f(Si−n,t, Si−(n+1),t, ..., Si,t, Si+1,t, ..., Si+j,t,

Si−n,t−1, Si−(n+1),t−1, ..., Si,t−1, Si+1,t−1, ..., Si+j,t−1,

..., Si−n,t−h, Si−(n+1),t−h, ..., Si,t−h, Si+1,t−h, ..., Si+j,t−h)
(2)

Here, Si+1, ..., Si+j are readings of the sensors placed
downstream, i.e., in the direction of traffic flow, Si−1, ..., Si−n

are readings of the sensors placed upstream, i.e., in the
opposite direction of traffic flow, and t, ..., t−h refers to h time
units in the past from the current time t. Fig. 2a shows that the
prediction of the sensor reading Si at time t+1 depends on the
readings from neighbouring sensors placed downstream (Si+1

and Si+2 shown in yellow), sensors placed upstream (Si−1

and Si−2 shown in green) and sensor Si’s previous readings
in time intervals t, ..., t− h (in red).
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(a) Spatio-temporal dependencies
of sensor data
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(b) Space-Time window represen-
tation of sensor data

Fig. 2: Data representation of spatial time-series

We map Equation 2 to a space-time window which is fed
as an input to train the prediction model. For a sensor Si

on a particular point in the highway, the space-time window
contains sensor readings, i.e., the density of vehicles computed
using the flow and average speed recorded by the sensor,
from i− n sensors placed upstream and i+ j sensors placed
downstream. These readings are taken for a history of h
time stamps from the current time t. As shown in Fig. 2b,
the first row of the window contains sensor readings from
Si−n...Si...Si+j at a current time interval t. Similarly, the
next row is for readings at t − 1, i.e., the previous minute.
The rows following this contain previous readings till t − h
time interval. Once the input is fed, the prediction model is
trained to predict for t+n future time intervals traffic density.

III. GRAPH REPRESENTATION AND PARTITIONING

A. Graph Representation

We represent the traffic infrastructure sensors in the form
of a directed weighted graph to capture the spatio-temporal
dependencies between the time-series from the sensors. We
construct the graph G based on the road paths and the
traffic direction between the sensors. Next, we weight the
graph using sensor readings and distance between the sensors.
Sensors that are at the same location but on different lanes
are represented as a vertex in V . The paths between these
vertices are represented as edges in E. The direction of the
traffic flow determines the direction of the edges. Fig. 3 shows
the sensors on parallel lanes at the same location grouped
together as sensor site vertices (in blue) and the road between
them are represented as directed edges (in red). Fig. 4 depicts
a high-level view of the sensor graph of Stockholm centre.
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Fig. 3: Sensor graph creation

Fig. 4: Graph representation of road sensors in Stockholm

Once the graph is constructed, the edges are weighted based
on the travel time of the cars. The edge weight is equal to the
time it takes a vehicle to travel the road segment corresponding
to that edge. The weight w(i, j) represents the weight of an
edge directed from the vertex vi to vj . w(i, j) is calculated
using the average speed v of vehicles recorded by the sensors
corresponding to the vertex vj during rush hours and distance
d between the sensors corresponding to vertices vi to vj .
Equations 3 [17] are used to compute the distance d and travel
time t for weighting the edges.

d = 2r arcsin(

√
sin2(a) + cos(ϕ1) cos(ϕ2) sin

2(b))

t = d/v

where a = (ϕ2 − ϕ1)/2 and b = (λ2 − λ1)/2

(3)

ϕ1 is start latitude in radians, λ1 is start longitude in radians,
ϕ2 is end latitude in radians, λ2 is end longitude in radians, r
is Earth radius (6371 km), d is distance between sensor sites.

B. Graph Partitioning

We partition the directed weighted graph, that represents
the traffic infrastructure sensors, in order to find groups of
correlated sensors. The partitioning algorithm consists of three
stages: 1) Creation of base partitions; 2) Creation of the base

partitions graph; 3) Addition of partitions from front and
behind to capture the dependencies of sensors located behind
(in the direction of traffic flow towards the point of interest)
and in front of the selected point of interest (in the direction
of traffic queue growing or moving in the opposite direction
of traffic flow towards the point of interest) in the graph.

Creation of Base Partitions. The base partitions are created
using backward traversal of the graph from the starting point
which is a vertex with no outgoing edge. The backward
traversal is made to capture the dependencies between sensor
readings caused by cars moving in the direction of traffic flow.
For example, a moving car counted by one sensor will be
counted by the next sensor in the flow direction.

The algorithm starts by taking an input parameter time t,
and chooses a starting point, which is a node/vertex with no
outgoing edge from it, in the graph. The traversal is made in
the opposite direction of the incoming edge towards the node.
The weights of edges along the traversal are added up until
they reach the threshold t. Once the threshold is reached, the
edges are added to a partition and the next partition starts from
the last edge visited. The algorithm terminates when all edges
are visited. This results in creating base partitions.

Algorithm 1 defines the steps to create base partitions. G
is the input sensor graph, v is a vertex and e(v, w) represents
an edge. getStartingVertices(G) returns starting vertices in G.
getBackwardVertices(v) is used to get vertices visited when
traversed backwards from v and getMaxWeight(v) is used to
get maximum weight of the partition containing vertex v.

Fig. 5a shows an example of the directed weighted graph
created to represent the road sensors, where the weights are
based on travel times of vehicles. Fig. 5b shows the base
partitions created over the weighted sensor graph with an input
parameter t = 2 min and the starting vertex in red.

Creation of Base Partitions Graph. Once we have the
base partitions, they are connected to form a base partitions
graph, where the partitions are vertices and the flow directions
between them are edges (Fig. 5c).

Additions of Partitions from Front and Behind. After we
get the base partitions graph, first, we add some partitions from
behind to capture the dependencies between sensor readings
caused by the cars moving towards the tail of the base
partition. Then, we add partitions from the front to capture
dependencies between sensor readings caused by the traffic
queue, created during a traffic jam, moving towards the head
of the base partition. The number of partitions added from
front and back affects the size of our final partitions.

A partition size is determined in such a way that it covers all
correlated sensors reachable within the prediction time horizon
by a car travelling at an average speed in each segment of the
partition, i.e., the sensors affected by the same traffic stream
are placed in the same partition if the travel time between them
lies within the prediction horizon. This allows partitioning of
large sensor networks while preserving dependencies between
spatial time-series generated by the sensors.

In our experiments, we make predictions for up-to 30 min.
Therefore, we add partitions from the back that cover at least
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(a) Directed weighted graph (b) Base partitions (c) Base partitions graph
(d) Critical partitions with forward
and backward partitions

Fig. 5: Partitioning steps

Algorithm 1 Backward Graph Partitioning Algorithm for
Creation of Base Partitions

P={} � Parititions initialized
function main(G, s) � G - graph, t - input time

starting vertices=getStartingVertices(G)
for each (v in starting vertices)

partition(G,v,t,0)
end for
collect all partitions in P
return P

function partition(G, v, t, sum) � G - graph, v - vertex,
t - input time, sum - accumulated sum

if v is in P then
return

if t ≤ sum then
add v to starting vertices
return

add v to a partition in P
next vertices = getBackwardVertices(v)
for next vertex in next vertices do

weight = weight of e(v, next vertex)
if next vertex not in P then

partition(G, next vertex, t, sum + weight)
else if t+weight <=getMaxWeight(next vertex)

then
merge the current partition with the partition

containing next vertex.
else if sum+weight <= t then

add vertices of partition containing next vertex
to starting vertices.

partition(G, next vertex, t, sum + weight)

the distance travelled by the cars coming towards the base
partition in 30 min time interval. Similarly, we add partitions
at the front of the base partition by almost half the number of
the ones added at the back, because the traffic queue builds up
slowly and few sensors are covered by the traffic queue moving
backwards, i.e., towards the head of the base partition. Fig. 5d
shows the addition of partitions from the front (shown in blue)
and behind (shown in green) of the current base partition or
the critical partition (shown in red).

IV. PREDICTION MODELS

The prediction models we use for evaluation in our ex-
periments consist of 1) The single sensor models, 2) the

TABLE I: Configuration parameters of the prediction models

Model Input units Output units Memory
units

Single Sensor 1 1 50
Entire Sensor Infra-
structure

2058 2058 1000

Partitioning-Based partition size critical partition size 1000

entire sensor infrastructure model and, 3) the partitioning-
based traffic network models. In this section, we explain
various features of these models, such as the number of input
units, the memory units, and the output units. Table I contains
the configuration parameters of the prediction models.

A. Single Sensor Models

The single sensor models (SSMs) are trained per sensor,
where the input is only one sensor’s readings and the predic-
tion is also done for the same sensor. These models, when
considered individually, have low complexity as the input and
output is only one. However, these SSMs result in a very large
number of models and they collectively require high compu-
tational power for training and serving. The prediction results
of this model will be based only on the readings of a single
sensor and no information from neighbouring sensors is taken
into account. This might result in less accurate predictions
because less information is fed to train the prediction model.

B. Entire Sensor Infrastructure Model

The entire sensor infrastructure model (ESIM) is a huge un-
partitioned model trained on readings from all infrastructure
sensors and makes predictions for all the sensors. Using all
sensors’ readings during model training can help the model
learn the correlations between the sensor readings because
of their spatio-temporal dependencies. The complexity of this
model is directly dependant on the number of input and output
units of this model. In our case, the number of input units and
output units for this model are equal to 2058, which is the
total number of sensors in the road sensor infrastructure.

C. Partitioning-Based Models

The partitioning-based models (Bt) are trained with sensors
in the partitions created after partitioning the road infras-
tructure graph. The partitioning algorithm creates partitions
to group the correlated sensors. Creating partitions helps in
reducing the number of sensors used for training the prediction
model, which results in a less complex model per partition
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compared to the entire sensor infrastructure model. The num-
ber of input and output units for the partitioning-based model
depends on the size of the partition. In our experiments, we
use various input parameters for creating partitions of different
sizes. More details about the input parameters used in our work
are given in the evaluation section V-C.

V. EVALUATION

We evaluate the accuracy and performance of our proposed
approach to predict road traffic density. We compare the
proposed partitioning-based prediction models with the entire
sensor infrastructure model and the single sensor models.

Accuracy: We measure the accuracy of models in terms
of the Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE). RMSE and MAE between predicted density
values d̂inm and observed density values dinm for ith interval,
N number of sensors over M minutes of the days are
computed using the following equations:

MAE =
1

NM

N∑
n=1

M∑
m=1

∣∣∣dinm − d̂inm

∣∣∣ (4)

RMSE =

√√√√ 1

NM

N∑
n=1

M∑
m=1

(dinm − d̂inm)
2 (5)

Performance: We measure the performance of prediction
models in terms of prediction and training time.

A. LSTM Network-Based Traffic Prediction Model

Our prediction model is based on the stacked LSTM
network architecture with two LSTM layers. In our previ-
ous work [5], we compared the 2 layer LSTM network-
based model with other prediction models including classical
baseline statistical models, such as ARIMA, Support Vector
Regression (SVR), and neural network-based models, such
as RNNs with two layers, Feed Forward Neural Network
(FFN) with two layers and LSTM-1 with a single LSTM layer.
LSTMs with 2 layers proved to give better prediction accuracy
than the aforementioned mentioned models. Therefore, in
this work, we use the same stacked 2 layers-based LSTM
prediction model and address the scalability problem.

B. Dataset

The traffic dataset used in this work was provided by the
Swedish Transport Administration [18]. The dataset consists
of readings from radar sensors on Stockholm and Gothenburg
highways during the period 2005-2016. The sensors are placed
a few hundred meters apart from each other on each lane. They
collect data per minute, that results in a large and microscopic
dataset compared to data aggregated per hour or over multiple
lanes. The sensor readings include the flow and average speed
of vehicles per minute. The dataset used for prediction consists
of more than 88 million data points collected by 2058 sensors
(Fig. 1) over a period of one month in 2016.

TABLE II: Accuracy of Prediction Models

Model RMSE
10 min

RMSE
20 min

RMS
30 min

MAE
10 min

MAE
20 min

MAE
30 min

SSM 5.9 6.5 6.9 3.0 3.2 3.5
ESIM 6.1 6.2 6.5 3.1 3.1 3.2
B2 5.4 6.2 6.5 2.7 3.0 3.1
B5 5.4 5.7 6.2 2.7 2.8 2.9
B10 5.5 6.0 6.1 2.7 2.8 3.0
B15 3.2 3.5 3.7 1.8 1.9 2.0

C. Partitioning Parameters

We partition the road sensor network graph to create base
partitions for various values of parameter t. Fig. 6 shows
the results of partitioning for values of t = 3 min, 5 min,
10 min and 20 min. Partitions are shown in different colors,
where colors of two partitions representing traffic in opposite
directions may overlap. The higher the base partition creation
input parameter, the bigger the partition size. Also, the total
number of partitions becomes less with the increase in the
input parameter. In Fig. 6d, we can see that almost all the
highway is covered with the partition shown in black color.
This partition further has one more similar partition for the
traffic in the opposite direction.

D. Setup

We performed our experiments on-premises cluster. The
on-premises nodes consist of Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz, 256GB of RAM and 16.6 TB
disk. we used Apache Spark version 2.4.0. with Python 2.7.15
and Tensor Flow version 1.11.0.

VI. RESULTS

Accuracy. We measured the accuracy of different prediction
models by computing the RMSE and MAE. Table II shows
the RMSE and MAE values for the Single Sensor Models
(SSMs), the Entire Sensor Infrastructure Model (ESIM) and
the Partitioning-Based models (Bt) using base partitions with
the input parameter t = 2 min, 5 min, 10 min and 15
min, denoted as B2, B5, B10 and B15, respectively. SSMs
have lower errors compared to ESIM for short prediction
intervals, such as 10 min; whereas, ESIM has slightly less
error for 20 min and 30 min intervals. Bt models show
better accuracy compared to the base-line SSMs and ESIM.
Partitioning models with 15 min (B15) base partition shows
the best accuracy. Fig. 7 shows RMSE for the base-line SSMs
and ESIM compared to B15. B15 has about 2x less RMSE
compared to the base-line approaches. Furthermore, RMSE
and MAE increase with the increase in the prediction horizon.

Performance. The performance of the prediction models is
measured by computing the sequential training time, parallel
training times, and the prediction time. Fig. 8 shows the
training and prediction times of SSMs, ESIM and Bt models.
One SSM has the prediction time < 1 sec, thus it is omitted
from the plot in Fig 8c. SSMs have shorter parallel training and
prediction times compared to other models. However, there
are 2058 sensors and training/serving SSMs sequentially for
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(a) 3 minutes partitions (b) 5 minutes partitions (c) 10 minutes partitions (d) 20 minutes partitions

Fig. 6: Partitioned road graph using different input parameters

Fig. 7: RMSE (veh/km) of traffic density

TABLE III: Performance of Prediction Models

Model Parallel train-
ing time (sec)

Sequential train-
ing time (sec)

Prediction
time (sec)

No. of
models

SSM 100.3 205600 <1 2058
ESIM 6300.2 6300 130.2 1
B2 4696.4 291152 55.3 62
B5 1776.1 33746 17.6 19
B10 838.2 10897 9.6 13
B15 522.1 4699 6.3 9

all these sensors take long time and makes SSMs inefficient in
terms of performance. Therefore, the training and prediction
time for SSMs, if run sequentially, is very high.

ESIM has the highest training time if run in parallel, and
prediction time because of a large number of sensor data
being processing to train this huge network. On the other
hand, the Bt models have shorter training time, if run both
in parallel and sequentially with B15, and less prediction
time compared to ESIM. The training and prediction time
for the partitioning-based models decreases with the increase
in the input parameter for base partitions creation. Table
III shows the performance comparison of these models. The
number of partitions for B15 is only 9 and it has less training
and prediction time compared to other models. Hence, it is
suitable for large-scale traffic prediction. Overall, partitioning-
based models Bt take 2x, if run sequentially, and 12x, if run
in parallel, less training time, and 20x less prediction time
compared to ESIM. The partitioning-based models take 100x
less total sequential training time compared to SSMs.

Summary. Our results for comparing SSMs, ESIM and
partitioning-based models show that we can achieve a scalable

traffic prediction solution using partitioning-based models. Our
experimental results show that: 1) SSMs are better for very
short prediction horizons compared to ESIM and become less
accurate with the increase in prediction horizon. At scale, the
number of SSMs gets large which makes them inefficient for
use in terms of overall high training and serving time. 2) ESIM
albeit high training time yields better accuracy compared to
SSMs for long prediction horizons. 3) Partitioning-based mod-
els with B15 shows overall best accuracy compared to SSMs
and ESIM. The performance is also better compared to ESIM,
in terms of the training and prediction time. Also, compared to
SSMs the performance of partitioning-based models is better
in terms of the training time if run sequentially.

VII. RELATED WORK

Partitioning. Our partitioning algorithm is based on back-
ward traversal of the graph for finding base partitions. It is
similar to finding sub-trees or sub-graphs in a graph. There
are some prior works done on this problem. For example, [19]
deals with finding siblings in the sub-tree and [20] deals with
fusing child nodes to get smaller trees. The prior works are
limited only to finding sub-trees in a tree and cannot be applied
on general graphs that might contain cycles. In this work, we
propose a partitioning algorithm for directed weighted graphs
(with cycles). For the considered use-case of traffic flow, our
algorithm takes into account the flow direction of cars to create
sub-graphs or sub-trees containing road segments where the
cars arrive from different directions towards a vertex in the
graph selected as the starting point of the algorithm.

Scalability. Fouladgar et.al. [21] worked on scalable deep
neural networks for urban traffic congestion prediction. How-
ever, they did not focus on addressing the scalability issue.
Moreover, they use aggregated data over 5 min for only
58 locations. The issue of scale is still un-addressed. Other
works [22], [23] done on large-scale traffic estimation and
prediction do not fully address the issue of growing model
complexities at scale.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we address the scalability problem of large-
scale road traffic prediction using real-life large data-sets gen-
erated by traffic sensors deployed in Stockholm and Gothen-
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(a) Training time (sec), if run sequentially (b) Training time (sec), if run in-parallel (c) Prediction time (sec)

Fig. 8: Training time (sec) for the sequential and parallel run, and prediction time (sec) of different prediction models

berg, Sweden. We propose a partitioning technique with
corresponding algorithms to tackle the scalability problem
that enables parallelism in both training and prediction, and
hence reduces the training and model serving times while
improving the accuracy of LSTM-based prediction models. We
represent the road sensor infrastructure as a directed weighted
graph to capture the spatio-temporal dependencies between
the sensor readings; We propose a graph-based partitioning
algorithm to group correlated sensors reachable within a given
time horizon into partitions, to capture dependencies between
spatial time-series of data collected by sensors in partitions,
and to train and serve prediction models for partitions in
parallel. The partitioning-based prediction models are fast and
more accurate compared to single-sensor models and a single
non-partitioned model for the entire road sensor infrastructure.

With this real-life case study, we have illustrated that parti-
tioning is feasible and effective to address the scalability chal-
lenge in modelling of complex systems using deep learning,
given that structural partitioning of data sources preserves the
data dependencies, e.g., dependencies between sensor readings
in the road infrastructure.

We believe that our proposed partitioning technique is
general and can be applied to partition and model a complex
system that can be represented as a directed weighted graph
of dependencies between spatial time-series generated by
components of the system.
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