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Abstract—IoT has enabled the creation of a multitude of
personal applications and services for a better understanding
of urban environments and our personal lives. These services
are driven by the continuous collection and analysis of user data
in order to provide personalized experiences. However, there
is a strong need to address user privacy concerns as most of
the collected data is of sensitive nature. This paper provides
an overview of privacy preservation techniques and solutions
proposed so far in literature along with the IoT levels at which
privacy is addressed by each solution as well as their robustness
to privacy breaching attacks. An analysis of functional and
non-functional limitations of each solution is done, followed
by a short survey of machine learning applications designed
with these solutions. We identify open issues in the privacy
preserving solutions when used in IoT environments. Moreover,
we note that most of the privacy preservation solutions need
to be adapted in the light of GDPR to accommodate the right
to privacy of the users.

Keywords-IoT; wearables; privacy; privacy-aware machine
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I. INTRODUCTION

With the increasing popularity of the Internet of Things

(IoT), the past decade has seen the appearance of a plethora

of smart devices. It has been predicted that there will be

more than 4 devices for every human on Earth by 2020 [1].

Broadly speaking, any sensor that is capable of collecting

data, processing it using built-in circuitry and transmitting it

qualifies as a smart device. Typically, these devices upload

the data to the cloud where it is further processed and stored

in order to offer personalized services to the end users.

An advanced variant of this approach includes offloading

further processing and analytic capabilities to the devices,

commonly referred to as edge computing.

Several models for the architecture of the IoT have been

proposed in literature. Figure 1 shows a widely accepted

general model with three layers [2]:

• L1: perception layer – consisting of the sensory devices

collecting data.
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Figure 1. IoT Architecture Layers

• L2: network layer – responsible for collecting, aggre-

gating, processing, and transmitting the data from the

perception layer.

• L3: application layer – consisting of all the applica-

tions and solutions driven by the sensory data that are

available to the users.

Based on this three-layer model, Chen [3] proposed that

the IoT ecosystem is composed of four major components:

sensors (in L1), communication (in L2), computation (in L2)

and service (in L3). We will use both models interchange-

ably in this work.

For example, a wearable sensor, such as a fitness tracker,

is part of L1. The network infrastructure as well as the

supporting technologies that store, aggregate and process

this data (commonly in the cloud) are part of L2. Finally,

users interact with fitness applications using their smart

phones in L3.

Obviously, privacy is a major concern in IoT. In our

above example, the fitness tracker collects information about

the user’s location with respective timestamp, heart rate,

daily activities, etc. This data is then collectively analyzed

by recommender systems to give users personalized health

advices. In many cases, such recommender systems are

driven by models created by machine learning (ML) al-

gorithms. Unfortunately, these models are often sensitive

towards specific training samples: Due to the nature of the

datasets and the uniqueness of the data points, some of the

training samples are implicitly memorized [4], [5]. Research

has shown that it is possible for attackers to replicate or
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recover the details of the recommender’s underlying model,

referred to as model stealing [6]–[8]. Moreover, private and

sensitive training data can be recovered from the models by

performing model inversion attacks [5], [9], [10].

When it comes to IoT devices and solutions available

commercially, privacy is often confused with security, and

secure solutions are often marketed as privacy preserving.

Moreover, existing solutions and techniques mainly focus on

securing the communication channel as well as authentica-

tion and authorization mechanisms. Much less consideration

is given to the preservation of privacy in the data collection,

aggregation, storage and retrieval processes [11]. There is

an imminent need to introduce privacy in all components,

which requires better understanding of privacy threats in the

IoT ecosystem. Furthermore, it is important to analyze the

impact of privacy preservation techniques on data analysis

and the quality of service in terms of trade-offs between

accuracy, privacy and efficiency.

This paper presents an overview of privacy preserving

techniques for IoT along with the privacy threats addressed

by each solution, their limitations, and known resistance to

attacks on user privacy. For this work, we focus on IoT

devices and services used for personal applications such

as health care and smart home solutions. Moreover, we

focus on the three components sensors, computation and

service since, since they have received much less attention

so far than the communication component, as mentioned

above. Consequently, we consider privacy in communication

protocols as outside the scope of this paper.

Contributions: Our main contributions can be summa-

rized as follows:

• We propose and present a taxonomy of privacy preserv-

ing techniques and solutions for the IoT ecosystem;

• We provide a comparison of privacy preserving tech-

niques and solutions that we have observed in this

work;

• We analyze the techniques in the light of the EU’s

General Data Protection Regulation (GDPR);

• We identify some open issues in privacy preserving

techniques that should be addressed.

Organization: This paper is structured as follows. Section

II presents common privacy threats and attacks in the IoT

ecosystem. A taxonomy of privacy preserving techniques is

presented in Section III along with the limitations of each

solution designed with these techniques, and their merits and

demerits. Afterwards, we briefly comment on privacy-aware

ML and data mining solutions in Section IV. An analysis

of privacy preserving techniques in the light of GDPR is

presented in Section V. Finally we list some open issues

and suggestions for future work, and conclude in Sections

VI and VII respectively.

II. PRIVACY THREATS AND ATTACKS IN IOT ECOSYSTEM

According to [12], privacy is “the claim of individuals,

groups, or institutions to determine for themselves when,

how, and to what extent information about them is com-

municated to others”. A definition of privacy concerns is

proposed by Smith et al. [13]: concerns for collection of

personal information, concerns for unauthorized secondary

use (internally in organizations and externally), concerns

for improper (unauthorized) access to personal data and

concerns for errors in collected personal information.

In order to categorize privacy preservation solutions, we

first identify privacy threats in the IoT ecosystem and the

architecture layers associated with them. Afterwards, we

provide an overview of attacks on privacy and the respective

threats associated with them.

A. Privacy threats

Ziegeldorf et al. [14] categorize the most common privacy

threats in IoT. In the following, we give a short overview

of the threats and we attribute them to the different layers

of the IoT architecture. Note that these threats often occur

in combination in IoT solutions, depending on the type of

service offered.

1) Identification: Denotes the threat of associating a

persistent identifier with an individual or their data. For

example, a name, pseudonym, an image or voice, or an

address can be associated with an individual from a database

or collection. It is classified as the most common threat.

Affects: information processing in the network layer (L2).

2) Localization and tracking: With a notion of identi-

fication, this denotes the threat of determining an individ-

ual’s physical location and recording it over time without

authorization or consent. Location based services (LBS)

commonly suffer from this threat as they can enable GPS

stalking [15], though internet traffic can also be exploited

for this purpose. Moreover, IoT-based LBS in indoor envi-

ronments require additional constraints on data sharing and

authorization, e.g., they can enable stalking and unintended

bias in work environments.

Affects: all layers of IoT architecture, though it is more

visible on the network (L2) and application (L3) layers.

3) Profiling: Users are profiled for the sake of personal-

ization but this often results in unwanted advertisements,

price discrimination or biased automatic decisions. In an

IoT-based environment, this threat is more imminent due to

the availability of multiple information sources which poten-

tially allow compiling complete information dossiers about

individuals and inferring user preferences by correlation with

other profiles.

Affects: information processing in the network layer (L2),

especially in scenarios that require data dissemination or

sharing with third parties.
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4) Interaction and presentation: Similar to shoulder surf-

ing, this refers to the threat of violating user privacy by

conveying some private information intended for a specific

user over a public medium. For example, one may get

recommendations through the speaker or screen of a smart

thing and people in the vicinity can also observe that

information.

Affects: application layer (L3). Also occurs on the perception

layer if the solutions offered are presented using peripherals

of the sensory devices (e.g., speaker or screen).

5) Lifecycle transitions: This threat occurs upon change

of ownership of the IoT devices. Most IoT devices are sold

with the assumption of buy-once-use-forever, and log huge

amounts of personal data throughout their lifetime history.

This data (and its impact on personalization offered by the

IoT device) may not be completely removed upon a memory

wipe before transfer of device ownership.

Affects: information collection in the network layer (L2).

6) Inventory attacks: This threat mainly occurs due to

communication capability of the sensor devices, which en-

ables unauthorized access or collection of data. Unautho-

rized parties can also observe the communication pattern

(and other distinguishable properties) and deduce the pres-

ence of devices as well as their type and model. Moreover,

inventories can give information on user preferences which

may be exploited by law enforcement agencies to conduct

unwarranted searches or by burglars for targeted break-ins.

Affects: information collection in the network layer (L2).

May be enabled using application layer (L3) by exploiting

security flaws in the application (L3) or through perception

layer (L1).

7) Linkage: Users consent to sharing different attributes

of personal data with each IoT service they use. However,

the combination of data collected from independent sources

can reveal information about individuals that they originally

did not consent to reveal [16]. Moreover, data maybe be

incorrectly inferred due to loss of context as a result of

the combination of different permissions (non-uniform data

access restrictions).

Affects: Information dissemination in the network layer (L2).

B. Attacks on user privacy

Here, we briefly describe some of the common attacks on

user privacy. Note that it is not an exhaustive list of possible

privacy attacks. Descriptions of more attacks targeting IoT

ecosystem components (e.g. databases and ML models) that

in turn compromise user privacy, can be found in [17], [18]

and other works.

1) Membership inference attack: With this attack, the

adversary can reveal whether or not a specific data record

was used to train the ML model, given that the adversary has

knowledge of the ML model and the individual data record

[19], [20]. Privacy is violated in this attack if inclusion of an

individual in a training set is itself sensitive. For example,

inclusion as a data record in a health-related ML model

leaks information about the health of that individual. In

terms of privacy threats, this attack directly threatens the

identification of a person, can aid in profiling, and can make

use of linkage and inventory attacks.

2) Data inference attack: As observed by [21], this attack

is commonly associated with encryption-based privacy pre-

serving solutions. It tries to recover some information about

a given data record by using Linkage (with publicly known

information) and making tailored queries to the system and

observing the responses to see if any information about

underlying records is leaked. A classical example of this

attack is using frequency analysis to break ciphers.

3) Attribute disclosure: Attribute disclosure occurs when

some released data records make it possible to infer charac-

teristics of an individual more accurately than is generally

known about that individual [22]. In other words, new

information about some individuals is revealed by the data

release. This attack commonly uses linkage from multiple

data sources to infer user information.

4) Fingerprinting and Impersonation attacks: Using In-

ventory attacks, an adversary might observe the communi-

cation pattern of a device and try to mimic it [23], [24]. If

the privacy is compromised, the adversary might be able to

access credentials of the device to alter privacy preferences

of the user and inject fake data into the system.

5) Re-identification attacks: In this attack, an adversary

can use linkage to combine data from multiple collections to

re-identify a record from outsourced, published or open data

records [25]. Re-identification is a very commonly observed

attack, with the classic example of a voter list used for re-

identification of a government official’s health record from

the records released by a health insurance company in 1997

[26].

6) Database reconstruction attacks: As observed in [27],

confidential data may be vulnerable to database reconstruc-

tion attacks when statistical data is published by agencies

for research or information purposes. This enables partial or

full reconstruction of the original database records, which

may lead to identification or unintended profiling of some

users based on their association with some attributes in the

targeted database.

7) Model stealing: Similar to database reconstruction, it

is also possible to reconstruct or reveal the internal training

parameters and other sensitive details of ML or recom-

mender models using model stealing techniques [6]–[8],

[28]. This reveals sensitive information about the training

data used for these models and can result in unintended

profiling of users.

8) Model inversion: By observing ML model predictions,

model inversion attacks enable adversaries to extract under-

lying training data of the individuals, as observed in [5], [9],

[10]. A specific training record may not always be extracted

as a result of this attack. Instead, the adversary will extract an
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average representation of inputs that are similarly classified.

However, this can be a huge privacy threat if the exposed

classes are sparsely populated, i.e., a class may correspond

to a single individual in the records [9].

III. TAXONOMY OF PRIVACY PRESERVING TECHNIQUES

We now present a taxonomy of privacy preserving tech-

niques that eliminate the risk of privacy threats (presented

in Section II-A) and prevent the attacks on user privacy

(described in Section II-B).

Terminologies: Techniques represent the general princi-

ple(s) and methodology employed for privacy preservation,

e.g., anonymization. Solutions represent algorithms designed

using these principles. Functional limitations refer to design

limitations on where the solutions can be applied depending

on the data or the nature of the algorithm. Non-functional
limitations include issues such as performance, scalability

and accuracy.

A. Anonymization techniques

The industry and health care sectors have been employing

data de-identification for years as a privacy preserving

measure [29]–[31]. Common practice includes removal of

some sensitive attributes like names, gender, state codes, or

identification numbers – commonly referred to as personally
identifiable information (PII). Moreover, more sophisticated

methods such as k-anonymization [32], [33] and l-diversity

[34] and t-closeness [22], are employed for better privacy

preservation guarantees.

1) k-anonymity: k-anonymity provides privacy protection

by guaranteeing anonymity between k entries – each released

data record will relate to at least k individuals in the

collection even if the records are directly linked to external

information [32], [33]. It uses generalization (replacing or re-

coding a value with less specific but semantically consistent

value) and suppression of records (not releasing a value at

all) to achieve privacy goals. However, these might skew the

characteristics of the original dataset. Functional limitations

include data diversification to ensure there are at least k
similar records in the database. k-anonymity has been shown

to perform well for location based services (LBS) to prevent

fake data injection attacks [35] and for privacy-preserving

publishing of Electronic Health Records (EHR) [36]. How-

ever, it has been shown that k-anonymity is susceptible to

data inference attacks [37], as well as attribute disclosure

[22], re-identification attacks and database reconstruction

attacks [38]. Improved versions such as (α, k)-anonymity

model [38], have been proposed in literature to mitigate re-

identification and database reconstruction attacks.

2) l-diversity: Improves upon k-anonymity and provides

protection against attribute inference attacks [34]. Each

anonymized group of (generally k) users has at least l
“well represented” sensitive attribute (SA) values. Another

improved version requires to have at least l distinct SA

values in each group, called distinct l-diversity [22]. Similar

to k-anonymity, functional limitations include diversification

in the dataset, as we need to ensure presence of well

distributed SA values. However, in some cases, attackers

are still able to associate an individual’s record to have a

certain SA when that value appears more frequently than

other values in the group [36].

3) t-closeness: This solution improves upon its prece-

dents and aims at limiting the distance between the prob-

ability distributions of SA values within an anonymized

group and SA values in the entire dataset [22]. This method

provides better privacy guarantees against attribute disclo-

sure as the attacker can not learn any information about an

individual’s SA value other than what is already available

from the entire dataset. Some practical implementations

have found t-closeness to be resistant to attribute disclosure

attacks, however, its resistance to membership inference

attacks still needs to be investigated [39].

Researchers have also combined these solutions for better

privacy guarantees. For example, Yin et al. [40] propose

using k-anonymity and l-diversity in combination to prevent

imbalanced sensitive attribute distribution in datasets to pre-

vent attribute disclosure attacks. Moreover, there are many

versions of all the aforementioned techniques proposed in

literature, each focusing on protecting against a specific type

of attack depending on the use case.

B. Model or output obfuscation techniques

User re-identification by model inversion attacks can be

prevented by obfuscating the output of ML models within a

provided range. Differential privacy is a solution that aims to

maximize the accuracy of queries from statistical databases

while minimizing the chances of identifying its records [41].

A function ensuring ε-differential privacy adds appropriately

chosen random noise (with Laplacian distribution) to the

true answer of an ML model to produce the response. This

implies a fixed uncertainty in all measurements, implicating

less probability of exposing a specific record. However,

differential privacy alone cannot provide privacy guarantees

for all scenarios due to certain functional limitations: a) it

is designed for low sensitivity data queries, and b) using

statistical inference and adaptive querying, one can infer the

form of the underlying data distribution.

Differential privacy can be regarded as the most widely

researched and adopted solution for privacy preservation

in the current era. It is highly effective against model

inversion and inference attacks, and is being used heavily

in combination with other techniques to develop privacy

preserving applications and services [4], [19], [42], [43].

C. Multi-tier Machine Learning as a privacy preservation
mechanism

Training openly available ML models on sensitive user

data directly allows for data memorization. This technique
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proposes introduction of multiple training levels, which can

reduce the footprint of distinct and sensitive training data

on output models. Semi-supervised knowledge aggregation

and transfer [4] is a multi-tier ML solution that proposes

a ‘teacher’ and ‘student’ models hierarchy. Teacher models

train directly on partitions of sensitive data, and afterwards

apply an aggregation mechanism as privacy preserving layer

to train a student (openly available) model on non-sensitive

data using the teacher models. This technique uses dif-

ferential privacy to define privacy-preserving properties of

student models during the training phase. As only the student

models are published, using model inversion attacks cannot

compromise the original training samples given the fact that

noisy voting is used in the training procedure instead of

considering the absolute majority of classification decisions

of teacher models. This is a relatively new distributed

solution with strong privacy guarantees and applicable to a

wide range of ML models. However, its utility with respect

to quality of recommendations needs to be researched.

D. Decentralized machine learning

Decentralized machine learning solutions offer a new

computing paradigm for better privacy preservation. Instead

of transmitting (potentially sensitive) user data to compu-

tation, a part of the computation is offloaded to end-user

devices and each device contributes partial updates to the

system model. Doing so eliminates the risk of exposing

sensitive and private raw data to the service provider as well

as other honest-but-curious adversaries present in the envi-

ronment. Federated machine learning [44], [45] has become

an increasingly popular solution based on this technique

in the past few years and is increasingly being researched

and used in ML models and recommender systems [46]–

[49]. It proposes creation of a global model as a result of

learning attributes from updates pushed by users. Since it

is a relatively new technique, it caters well to the nature of

distributed computing systems used in the IoT ecosystem:

It is highly scalable and efficient. However, there is a

need to investigate how different applications and use cases

can be ported to this solution. Federated machine learning

can, however, be susceptible to inference attacks [50] as

it exposes intermediate results which may actually leak

important information about user data [47].

E. Cryptography-based solutions

It is believed that if data is encrypted during analysis, user

privacy can not be compromised. Homomorphic Encryption

[54] is a cryptographic solution that allows computation to

be executed directly on encrypted data. It supports addition,

multiplication, and quadratic functions. Moreover, homo-

morphic encryption offers privacy-preserving capabilities in

both training and classification phases of ML models, unlike

most of the existing works that only focus on the training

phase. Homomorphic schemes are further classified as fully

or partially homomorphic.
1) Partially Homomorphic schemes: These support lim-

ited operations like addition and multiplication as well as

other operations on ciphertexts, but do not support arbi-

trary computation on ciphertexts. These schemes perform

relatively well in practice and have better performance due

to lower computational complexity as compared to fully

homomorphic schemes. However, fewer algorithms can be

implemented using the restricted set of operations [55].
2) Fully Homomorphic Encryption: Fully Homomorphic

Encryption (FHE) schemes not only support multiplication

and addition, but also support quadratic function and

arbitrary computation on ciphertexts. Classifiers designed

using this schema are privacy preserving by nature and are

better suited for real world applications in terms of privacy

guarantees, because they support arbitrary computation.

However, few fully homomorphic encryption schemes

exist, and they are often computationally expensive, i.e.,

around 2-5 seconds per operation [55]. Some efficient FHE

schemes have been proposed [56], but they have been

found susceptible to data inference attacks like encryption

key recovery and data decryption in both known message

(broadcast) and unknown message (secret) scenarios [51].

Other popular solutions include garbled circuits and Se-

cure Multi-Party (SMP) computation protocols. Originally

proposed by Yao in the 1980s [57] as a secure way of

computation, garbled circuits are now used extensively for

providing privacy guarantees. Similarly, SMP solutions are

also being investigated for providing privacy guarantees in

information processing.

F. Data summarization techniques
Exposing raw user data not only poses communication

overhead but also puts user privacy at risk. This technique

proposes creation of aggregated and summarized versions

of datasets for efficient creation of ML models as well as

providing user privacy. This poses the trade-off between

accuracy of data and privacy preservation. The data sum-

marization solution proposed by [58] uses this technique for

improving performance and potentially enhancing privacy

preservation in the recommender systems. It marks portions

of the data as private and summarizes the rest of the data

from all users to create a representative training dataset.
When it comes to non-functional limitations, similar to

decentralized ML, it is a relatively new technique and is

scalable and efficient to cater to the nature of distributed

platforms and systems used by IoT services. However, pri-

vacy guarantees using this solution need to be investigated.

G. Ensuring privacy with dataflow models
This technique proposes creation of data flow models with

respective permissions at each level to ensure user privacy

and transparent accountability.
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Table I
ANALYSIS OF PRIVACY PRESERVING SOLUTIONS

Privacy
preserving
technique

Solution Merits Affected
IoT

layers

Relevant
privacy
threat(s)

Limitations Trade-
offs

Relevant
attacks

Known
resistance

Anonymization
k-anonymity Easy to im-

plement, low
complexity

L2 (in-
formation
aggrega-
tion)

Identification,
localization
and tracking,
profiling,
linkage

Requires di-
verse data

Accuracy/
privacy

Re-
identification,
Database
reconstruc-
tion, Data
inference,
Attribute
disclosure

Weak
resistance
(in some
imple-
menta-
tions)
[22], [37]

l-diversity Low
complexity

L2 (in-
formation
process-
ing)

Same as
above

Requires di-
verse data

Accuracy/
privacy

Attribute dis-
closure

Mediocre
resistance
[22], [36]

t-closeness Protects
sensitive
attributes

L2 (in-
formation
process-
ing)

Same as
above

Requires
strong
dataset di-
versification

Accuracy/
privacy

Attribute dis-
closure

Strong
resistance
[39]

Model or out-
put obfuscation

Differential
privacy

Easy to in-
tegrate with
solutions

L2, L3 Identification,
profiling,
linkage

Works
for low
sensitivity
data queries

Accuracy/
privacy

Model
Inversion,
Inference
attacks

Strong
resistance
[19], [42],
[43]

Multi-tier ML Semi-
supervised
knowledge
transfer

Distributed,
applicable
to any ML
model

L2, L3 Profiling,
linkage

Affect on
accuracy of
ML models
is unknown

Accuracy/
privacy

Model steal-
ing and in-
version, Infer-
ence attacks

Strong
resistance
[4]

Decentralized
ML

Federated ML Highly scal-
able and effi-
cient

L2, L3 Inventory
attacks,
linkage,
profiling

Potential
information
leakage

Efficiency/
privacy

Inference,
Fingerprint-
ing and
imperson-
ation attacks

Mediocre
resistance
[50]

Cryptography Fully Ho-
momorphic
encryption

Private ML
models
training and
classification

L2 Inventory at-
tacks

Large com-
putational
overhead

Efficiency/
privacy

Data
inference
(data/key
recovery)

Strong/
mediocre
resistance
[51]

Partially Ho-
momorphic
encryption

Relatively
lower com-
putational
overhead

L2 Inventory at-
tacks

Not applica-
ble to all ML
models

Accuracy/
privacy

Inference at-
tacks

Mediocre
resistance

Data
summarization

Public-private
data summa-
rization

Highly
efficient
solution with
minimal loss
of accuracy

L2 Identification Unquantified
Privacy
guarantees

Accuracy/
privacy

Inference at-
tacks

Unknown

Data flow models blockchain
for privacy

Verifiable
privacy

L2 Inventory at-
tacks

Computational
overhead,
low
scalability

Efficiency/
privacy

Fingerprinting
and imper-
sonation
attacks

Strong
resistance
[52]

privacy-
preserving
programming
languages
and platforms

Low
overhead
with
verifiable
privacy

L2, L3 Inventory at-
tacks

Information
flows to be
declared
beforehand

Efficiency/
privacy
(in some
cases)

Fingerprinting
and imper-
sonation
attacks (some
cases)

Strong
resistance
[23]

Personalized
data stores

HAT User
controls and
monetizes
her data

L1, L2 Linkage (un-
der consent)

Requires
users to pay
for storage

Cost/ pri-
vacy

Attribute dis-
closure

Unknown

Private
Compute
Units

Intel R© SGX
processors

Protected
execution
environment;
no data or
computation
is exposed

L2 (in-
formation
pro-
cessing,
computa-
tion)

Inventory at-
tacks

Requires
specific
application
design for
SGX pro-
gramming
model

Efficiency/
privacy

Data
inference
(using side-
channel
information
and cache-
timing [53])

Strong/
mediocre
resistance
[53]

1020



1) Blockchain to ensure privacy and verifiability: Re-

searchers have proposed the use of blockchain for verifi-

ability and accountability of data collection, storage and

access in IoT environments [52], [59]–[61]. For example,

blockchain-based data provenance can provide tamper-proof

records and enable data accountability in the cloud [52].

Moreover, blockchains are being extended for use in the

context of IoT for healthcare, as surveyed in [62]. However,

there is room for research for introducing scalability in

blockchains so they can adapt well to IoT environments.

2) Privacy-centric programming languages and plat-
forms: These solutions require information flows and privi-

leges to be declared beforehand, so all the data elements are

attached to respective policies [23], [63]–[65]. For example,

Jeeves [65] is a privacy centric programming language, used

as an add-on library with Java. HomePad [63] applications

are implemented as directed graphs of elements (instances

of functions that process data in isolation). It allows for

automatic verification of the application’s flow graph against

user-defined privacy policies with low computational over-

head by modeling these elements and the information flow

graph. In addition to that, [66] outlines some guidelines for

privacy preservation while designing IoT applications.

H. Personalized data stores

Personalized data stores offer a flipped environment for

privacy preservation, where the users collect and maintain

their data from multiple sources in one place, e.g. an

encrypted data store, and authorize its informed use. The

Hub-of-All-Things project (HAT) is a solution that proposes

total control of data by the user and monetizing this data

[67], [68]. Instead of storing data on different platforms, it

is aggregated in the data store and users can offer their data

to interested parties in exchange for personalized services.

I. Privacy preservation at processing level

This technique proposes secure and private

compute/processing units to ensure that no data or

computation is exposed in the entire information flow.

Intel R© introduced Software Guard Extensions (SGX) [69]

as a solution that proposes the use of “enclaves”, protected

areas of execution, to protect selected code and data from

disclosure or modification. A huge merit of this solution is

that it is a hardware-assisted execution environment with

the smallest possible attack surface: the CPU boundary.

It also provides specific architecture instructions to mark

portions of data and code as private, which makes it similar

to sandbox concepts in the security domain. In principle,

it is a privacy-preservation solution for both users and

corporations – users may execute analytic codes locally

without moving their data anywhere, and corporations

can analyze data on user-end without exposure of their

algorithms. However, recent research has shown that it

is susceptible to some data inference attacks using side-

channel information like cache-timing [53] when working

with weaker versions of encryption algorithms. It also

requires designing application complying with a specific

programming model, which may be inefficient for adapting

private implementations of algorithms currently in use by

large organizations.

Table I summarizes the results of our analysis and classi-

fication of privacy preservation techniques and solutions, af-

fected IoT layers and their known resistance towards attacks.

For each of the privacy preservation solutions in the table,

we indicate a level of privacy, namely strong/mediocre/weak

resistance, based on the assessments provided in the litera-

ture (studied papers).

IV. PRIVACY-AWARE ML AND DATA MINING

A number of privacy preserving implementations of ma-

chine learning and data mining algorithms can be found in

literature. Papernot et al. [70] survey the state of the art

of privacy preserving ML algorithms. Moreover, differential

privacy is used extensively in ML models for protection

against model inversion attacks [4], [71]–[73].

Chiron [74] is an interesting implementation of privacy-

preserving ML-as-a-service, designed particularly for cloud

environments which form a major part of the IoT ecosystem.

It uses private compute units (with SGX) to enhance privacy

guarantees. Moreover, implementations of k-anonymity in

combination with ML algorithms and cryptography tech-

niques with ML [75] also exist in literature.

When it comes to data mining, as mentioned in Sec-

tion III-D, various implementations of recommender systems

use federated learning as a privacy preservation measure

[46]–[49]. Collaborative filtering is used extensively in rec-

ommender systems [76]. Some privacy-preserving imple-

mentations include [77], which combines k-anonymity with

collaborative filtering; [78], which applies obfuscation; and

[79], which uses differential privacy in combination with ho-

momorphic encryption to ensure private recommendations.

Also, [48] proposes a federated ML version of collaborative

filtering for personalized recommendations.

V. GDPR AND ITS IMPLICATIONS

The GDPR enforces all organizations that collect and

process data from users to include Privacy by Design and

Privacy by Default (originally explained in [80]). Privacy

by Design dictates that organizations should design all

their services involving processing of personal data while

considering data protection and privacy measures at every

step. Privacy by Default dictates that all public services

should apply the strictest privacy settings by default, without

any manual input from the end-user. The GDPR also grants

some basic rights to end-users: right to (give and withdraw)

consent, right to be forgotten and right to access (personal)
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information [81]. Veale et al. [82] analyze the impact of

incorporating the GPDR law in ML models for protection

against model inversion and membership inference attacks.

They conclude that some ML models may need to be legally

classified as personal data as a result of this law.

Relatively new privacy preserving techniques proposed

in literature are GDPR-compliant by design. For example,

personalized data stores are directly based on the principles

of user consent and the right to access. The right to be

forgotten can also be exercised by removing the data access

from organizations that fail to comply with the user’s privacy

preferences. Also, for private compute units, since user data

can potentially always stay on the device, the right to access

data is respected. However, organizations need informed

consent of the users for analyzing their data. Similarly, data

flow models (solutions using blockchain and pre-defined

information flows) are also GDPR-compliant by design.

Moreover, for these solutions, the user defines privacy pref-

erences and is able to verify if they are respected by the

service. For solutions based on data summarization, users

may not be able to exercise their right to access information,

as the information is used in a modified (summarized) form.

Moreover, cryptography-based techniques may also hinder

the right to access collected information although they may

ensure privacy by design and by default. Other techniques

based on multi-tier and decentralized ML might also not be

able to comply with the right to access information as it

might give out sensitive details about how the organizations

are training their ML and recommender models. We believe

that, in principle, it is hard to enforce the right to forget

in ML algorithms once user data has already been used to

train an ML model (though the effects of data point on the

trained model might disappear eventually), which in turn

implies that they should be classified as personal data as

proposed by [82].

VI. OPEN ISSUES AND FUTURE WORK

In the light of our analysis of privacy preserving tech-

niques and the discussion on GDPR presented above, we

identify some open issues and suggestions for future work.

First, it is advised to use synthetic or representative datasets

for where exact computations are not needed [83]. Moreover,

there is a need to find an optimal trade-off between data

utility and privacy preservation when generating the repre-

sentative datasets. Solutions for data summarization should

be combined with other privacy preserving techniques for

better privacy guarantees. However, the effect of combining

different techniques on accuracy and efficiency of solutions

needs to be investigated. Also, there is a strong need

to formulate guidelines for publishing privacy preserving

open datasets, ML and recommender models. Additionally,

blockchains-based solutions might be good candidates for

verifiable privacy preservation on the user-end. In general,

there is no clear winner among the privacy preservation tech-

niques – depending on the use case, some techniques will

outperform others in terms of robustness towards attacks.

Another interesting observation is that industry and health-

care organizations have often found the relatively weaker

solutions to be strong candidates for privacy preservation.

VII. CONCLUSION

In this paper, we have identified privacy threats on differ-

ent layers of the IoT ecosystem as well as associated attacks

on user privacy. We presented a taxonomy of state of the art

privacy preservation techniques along with their limitations,

susceptibility to privacy threats and their proved robustness

towards attacks on privacy. Depending on the use case,

model obfuscation techniques, multi-tier and decentralized

ML, private compute units, and data flow models (using

blockchains and pre-defined information flows) emerge as

relatively stronger techniques for privacy preservation. How-

ever, not all of the solutions based on these techniques can

guarantee the rights granted by the GDPR to users. We also

highlight some open issues and directions for future work.

In summary, the solutions proposed in the recent years are

trying to incorporate the GDPR, which will ensure better

privacy guarantees for users.
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[53] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache
attacks on intel sgx,” in Proceedings of the 10th European
Workshop on Systems Security. ACM, 2017, p. 2.

[54] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine
learning classification over encrypted data.” in NDSS, vol.
4324, 2015, p. 4325.

[55] A. Padron and G. Vargas. Multiparty homomorphic encryp-
tion. Online: https://courses.csail.mit.edu/6.857/2016/files/17.
pdf.

[56] H. Zhou and G. Wornell, “Efficient homomorphic encryption
on integer vectors and its applications,” in Information Theory
and Applications Workshop (ITA). IEEE, 2014, pp. 1–9.

[57] A. C.-C. Yao, “Protocols for secure computations,” in FOCS,
vol. 82, 1982, pp. 160–164.

[58] B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi, “Fast
distributed submodular cover: Public-private data summariza-
tion,” in NIPS, 2016, pp. 3594–3602.

[59] G. Ayoade et al., “Decentralized IoT data management using
blockchain and trusted execution environment,” in Interna-
tional Conference on Information Reuse and Integration (IRI).
IEEE, 2018, pp. 15–22.

[60] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using
blockchain to protect personal data,” in 2015 IEEE Security
and Privacy Workshops. IEEE, 2015, pp. 180–184.

[61] X. Liang et al., “Towards data assurance and resilience in IoT
using blockchain,” in MILCOM. IEEE, 2017, pp. 261–266.

[62] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain
in healthcare applications: Research challenges and opportu-
nities,” Journal of Network and Computer Applications, 2019.

[63] I. Zavalyshyn et al., “Homepad: A privacy-aware smart hub
for home environments,” in IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 58–73.

[64] E. Fernandes et al., “Flowfence: Practical data protection
for emerging IoT application frameworks,” in 25th USENIX

Security Symposium, 2016, pp. 531–548.

[65] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for
automatically enforcing privacy policies,” in ACM SIGPLAN
Notices, vol. 47, no. 1. ACM, 2012, pp. 85–96.

[66] Z. B. Celik et al., “Program Analysis of Commodity IoT
Applications for Security and Privacy: Challenges and Op-
portunities,” arXiv preprint arXiv:1809.06962, 2018.

[67] I. Ng et al., “Making value creating context visible for
new economic and business models: Home Hub-of-all-Things
(HAT) as platform for multisided market powered by IoT,”
in Panel Session at The Future of Value Creation in Complex
Service Systems Minitrack of Hawaii International Confer-
ence on Systems Science (HICSS), 2013, pp. 7–10.

[68] Hub-of-All-Things. Last Accessed: Apr 01, 2019. [Online].
Available: https://www.hubofallthings.com/

[69] V. Costan and S. Devadas, “Intel SGX explained.” IACR
Cryptology ePrint Archive, vol. 2016, no. 86, 2016.

[70] N. Papernot et al., “SoK: Security and privacy in machine
learning,” in IEEE EuroS&P. IEEE, 2018, pp. 399–414.

[71] Z. Ji, Z. C. Lipton, and C. Elkan, “Differential privacy
and machine learning: a survey and review,” arXiv preprint
arXiv:1412.7584, 2014.

[72] M. Abadi et al., “Deep learning with differential privacy,”
in Proceedings of SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 308–318.

[73] C. Dwork and V. Feldman, “Privacy-preserving prediction,”
arXiv preprint arXiv:1803.10266, 2018.

[74] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel,
“Chiron: Privacy-preserving machine learning as a service,”
arXiv preprint arXiv:1803.05961, 2018.

[75] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in IEEE S&P. IEEE,
2017, pp. 19–38.

[76] X. Su and T. M. Khoshgoftaar, “A survey of collaborative
filtering techniques,” Advances in Artificial Intelligence, 2009.

[77] F. Zhang et al., “Privacy-aware smart city: A case study
in collaborative filtering recommender systems,” Journal of
Parallel and Distributed Computing, 2018.

[78] S. Berkovsky et al., “Enhancing privacy and preserving accu-
racy of a distributed collaborative filtering,” in Proceedings
of the ACM conference on Recommender systems. ACM,
2007, pp. 9–16.

[79] R. Guerraoui et al., “I know nothing about you but here is
what you might like,” in 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 439–450.

[80] S. Spiekermann and L. F. Cranor, “Engineering privacy,”
IEEE Transactions on Software Engineering, vol. 35, no. 1,
pp. 67–82, Jan 2009.

[81] P. Voigt and A. Von dem Bussche, “The EU General Data
Protection Regulation (GDPR),” A Practical Guide, 1st Ed.,
Cham: Springer International Publishing, 2017.

[82] M. Veale, R. Binns, and L. Edwards, “Algorithms that re-
member: model inversion attacks and data protection law,”
Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, vol. 376, 2018.

[83] M. Young et al., “Beyond open vs. closed: Balancing indi-
vidual privacy and public accountability in data sharing,” in
Proceedings of the Conference on Fairness, Accountability,
and Transparency. ACM, 2019, pp. 191–200.

1024


