
Evaluation of the Use of Streaming Graph
Processing Algorithms for Road Congestion

Detection

Zainab Abbas*, Thorsteinn Thorri Sigurdsson*, Ahmad Al-Shishtawy†, Vladimir Vlassov*

*KTH Royal Institute of Technology †RISE Research Institutes of Sweden

Stockholm, Sweden

*{zainabab, ttsi, vladv}@ kth.se †ahmad.al-shishtawy@ri.se

Abstract—Real-time road congestion detection allows improv-
ing traffic safety and route planning. In this work, we propose to
use streaming graph processing algorithms for road congestion
detection and evaluate their accuracy and performance. We
represent road infrastructure sensors in the form of a directed
weighted graph and adapt the Connected Components algorithm
and some existing graph processing algorithms, originally used
for community detection in social network graphs, for the task of
road congestion detection. In our approach, we detect Connected
Components or communities of sensors with similarly weighted
edges that reflect different states in the traffic, e.g., free flow or
congested state, in regions covered by detected sensor groups.
We have adapted and implemented the Connected Components
and community detection algorithms for detecting groups in the
weighted sensor graphs in batch and streaming manner.

We evaluate our approach by building and processing the road
infrastructure sensor graph for Stockholm’s highways using real-
world data from the Motorway Control System operated by the
Swedish traffic authority. Our results indicate that the Connected
Components and DenGraph community detection algorithms can
detect congestion with accuracy up to ≈ 94% for Connected
Components and up to ≈ 88% for DenGraph. The Louvain
Modularity algorithm for community detection fails to detect
congestion regions for sparsely connected graphs, representing
roads that we have considered in this study. The Hierarchical
Clustering algorithm using speed and density readings is able to
detect congestion without details, such as shockwaves.

Index Terms—Streaming, Graph Processing, Congestion, Com-
munity Detection, Connected Components

I. INTRODUCTION

Congestion in road traffic networks poses several problems,

such as increased pollution and fuel consumption [1] and

reduced traffic safety [2]. Congestion mitigation strategies are

therefore an important part of the operation of a traffic system.

The focus of this research is on evaluating the use of streaming

graph processing algorithms for real-time congestion detection

and tracking to improve traffic safety and route planning. This

enables mechanisms that communicate in real-time relevant

information to drivers about the current traffic conditions in

order to improve drivers’ situational awareness.

In order to detect congestion in real-time, we propose to rep-

resent road infrastructure traffic sensors as a directed weighted

graph and to apply streaming graph processing algorithms on

it to detect congestion. We adapt the Connected Components

algorithm [3] and some existing graph processing algorithms

originally used for community detection [4] in social network

graphs, for the task of road congestion detection.

In graph-based community detection algorithms, the com-

munities are formed by grouping densely connected vertices.

In our case sensors placed on the road network are represented

as vertices with edges connecting neighbouring sensors. The

density of edges does not reflect the communities, but rather

the weights of edges (sensor readings) can be used for forming

”communities” of sensors-vertices with similar edge weights

(readings). Using these weights we want to see if neighbouring

sensors behave in a similar way, i.e, showing similar readings,

and can form communities representing different states of

traffic, i.e, free flow or congested state. Thus, a detected sensor

community reflects the traffic state in a period of time and a

road region covered by the sensor community. Also, if sensors

connected by edges with similar weights are located next to

each other, then the Connected Components algorithm can

be used to find components that are sub-graphs of connected

sensors representing a specific traffic state, such as free flow

or congested state in a corresponding region.

The main contributions of our work are as follows.

• We propose to represent the road infrastructure traffic sen-

sors that measure the average flow and speed of vehicles

per minute in the form of directed weighted graphs that

allows detecting congestion regions in a timely manner.

• We propose to adapt and use streaming graph processing

algorithms, namely Connected Components (CC) and

Community Detection (CD) algorithms, for congestion

detection by analysing the weighted sensor graph. Using

CC and CD algorithms allows detecting sensor groups

connected by edges with similar readings of speed or

density. The detected sensor groups reflect different traffic

states, e.g., free flow or congested state.

• We have adapted, implemented, and evaluated both com-

munity detection and Connected Components algorithms

for congestion detection in batch and streaming modes.

• We provide an open source implementation1 of graph

processing algorithms using Apache Spark [5].

1https://github.com/thorsteinnth/road-congestion-detection

1017

2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications

978-1-7281-1141-4/18/$31.00 ©2018 IEEE
DOI 10.1109/BDCloud.2018.00148

Main Findings: Results of our evaluation experiments

indicate that Connected Components and community detec-

tion algorithms can be adapted to analyse traffic states on

sensor graphs. Some algorithms show a rather high detection

accuracy, while some are unable to detect congestion regions.

In particular, our evaluation shows that the Connected Com-

ponents algorithm and the DenGraph community detection

algorithm can detect congestion with accuracy at best up to

≈ 94% for Connected Components and up to ≈ 88% for

DenGraph. The Louvain Modularity algorithm for community

detection fails to detect congestion regions for sparsely con-

nected graphs, representing roads that we have considered in

this study. The Hierarchical Clustering algorithm is able to

detect congestion but without details, such as shockwaves.

Structure: The remainder of the paper is organized as

follows. Section II contains necessary background, Section III

explains the algorithms adapted and implemented in our work.

Section IV describes implementation of our work, followed by

Section V explaining the evaluation experiments and results.

Finally, discussion and related work are presented in Section

VI and conclusion and future work in Section VII.

II. BACKGROUND

A. Traffic Flow Theory

Traffic flow theory explains the movements of traffic streams

on the road system in terms of three main variables [6]: flow f
(vehicles/time unit), average speed v (distance/time unit) and

density d (vehicles/unit distance). The relationship between

these variables in given by the equation below:

f = d× v (1)

Fig. 1: The fundamental traffic flow curve

Fig.1 shows the traffic flow theory plot of flow f versus

density d. The vehicles move with a free flow speed Vf in

the low-density area shown on the positive slope of the curve,

until the density reaches its limit dcritical where the flow is

maximum fmax. Beyond this point, congestion takes over,

where vehicles’ speed tends to decrease and the density keeps

on increasing until it reaches its limit, i.e, dmax.

B. Traffic Congestion

Traffic flow can be either ”free” or ”congested” [7]. It is said

that traffic is in ”free flow” when it is possible for vehicles

to drive, change lanes, overtake, and in general perform any

maneuver the driver wishes [8]. Congested traffic flow can then

be defined opposite to the free flow, i.e. when the conditions

on the road do not allow for the free movement of vehicles.

C. Congestion Detection

A congestion threshold can be determined by identifying

the empirical maximum point of free flow fmax, for a given

traffic sensor from its historical data using the fundamental

flow theory curve. The slope of a line drawn from the origin of

the fundamental diagram to the empirical maximum flow point

fmax gives the empirical minimum free-flow speed, according

to equation 1. Sensor measurements on the left side of this

line (speed higher than the minimum free flow speed) are then

taken to belong to free-flow, while sensor measurements falling

on the right side of the line are taken to belong to congestion.

To estimate the congestion magnitude, sensor measurements

are classified into congestion classes, based on how far below

the minimum free flow speed the measured average speed is in

increments of 5 km/h. Fig.2 shows an empirical fundamental

diagram, with a minimum free flow speed line and data points

colored to indicate the magnitude of congestion.

Fig. 2: Empirical fundamental diagram with minimum free

flow speed line. Data point color represents congestion mag-

nitude. Darker shades of red represent more severe congestion.

Density d can also be used as an indicator of congestion.

While the critical density can be extracted from historical data

on a per-sensor basis in the same way as described above, the

critical density does not vary significantly between different

locations in the road network. The critical density has almost

the same value for different highways [9]. According to The

Highway Capacity Manual from 2010, the maximum capacity

for a freeway segment is 45 vehicles per mile per lane [10],

translating to just under 28 vehicles per kilometer per lane.

Both average speed measurements as well, as density mea-

surements, are used for congestion detection in our work.

D. Traffic Queues and Shockwaves

Congestion results in a buildup of traffic queues and shock-

waves. A traffic queue can be defined as a row of vehicles

waiting to be served, with the queue length usually being

1018

defined as the number of vehicles waiting to be served [11]. In

our work, a series of adjacent sensors experiencing congestion

is taken to represent a traffic queue.

A shockwave is defined as a change or discontinuity in

traffic conditions [10]. More precisely, shockwaves are a

propagation of a change in flow and density [11], travelling

through the road network at a certain speed. The build-up

of congestion, where the end of a queue extends upstream

through the road network with time, is an example of a

shockwave.

E. Graph Based Analysis

Graphs are used to represent the relation between the data

elements. We propose to represent the road infrastructure

sensors in form of graphs because the readings recorded from

sensors placed next to each other on the road network are

correlated due to the spatiotemporal dependencies present in

the traffic data. For example, if a traffic jam starts to build-up

near a group of sensors then this traffic queue will propagate

towards the sensors downstream. The sensor readings in the

area of traffic jam will reflect the propagation of congestion

state downstream.

Several graph processing algorithms are out there used for

various purposes. Our work deals with detecting congestion

which propagates through the traffic network affecting a group

of sensors (in terms of the readings recorded by these sensors)

located in the area where congestion takes place. These

sensors will show high density and low-speed values. We use

community detection and Connected Components algorithms

to capture this trend in the infrastructure sensor graph.

III. ALGORITHMS

We have implemented the Connected Components algo-

rithm and community detection algorithms for congestion

detection first in a batch fashion. After that, we picked the

ones showing promising results to be executed in a streaming

fashion. In general, for community detection algorithms, the

communities are formed by grouping the vertices together if

they are densely connected. In our case sensors are represented

as vertices with edges connecting neighboring sensors. The

density of edges does not reflect the communities, but rather

the weights of edges (sensor readings) are used for forming

”communities” of sensors with similar edge weights. The

formed communities represent different traffic states, i.e, free

flow state or congested state. Also, the Connected Components

algorithm is used to find components that are sub-graphs of

connected sensors representing a specific traffic state. The

detail of these algorithms is as follows.

A. Batch Based Algorithms

1) Connected Components: The Connected Components

algorithm finds the sub-graphs in which all vertices are

connected by paths [3]. We use this algorithm to identify

Connected Components of congested sensors, i.e, the sensors

with measurements indicating congestion on road, in the in-

frastructure sensor graph. In the implementation, edges of the

base graph are first weighted with average speed measurements

taken from the destination vertex sensor. Then the edges with

weights less than the congestion threshold (Section II-C) are

removed. After that, the Connected Components algorithm is

run on the remaining sub-graphs, which results in assigning

the same ids to the congested sensors present in the same

sub-graph. These Connected Components of sensors represent

the traffic queues. Since the traffic sensors give measurements

every minute, a new graph is generated for every minute of

data (starting with the full graph and then removing edges

with weights less than the congestion threshold).

2) Louvain Modularity: The Louvain Modularity algorithm

[12] is a community detection algorithm. We use this algo-

rithm to identify communities of congested sensors. In the

implementation, first, each edge in the base graph is weighted

with the measured density value from the destination vertex

sensor. Then the Louvain Modularity algorithm is run on the

weighted graph. This algorithm results in generating groups

or communities of sensors representing either the congested

areas on the road or the free flow areas.

3) Hierarchical Clustering: Hierarchical Clustering [13] is

one of the traditional methods of community detection. In

the implementation, the sensors are first clustered based on

their average speed and density measurements, irrespective of

the base sensor graph. Then the base graph is used to find

Connected Components in the clusters to find sensors that do

not only have similar measurements but also are connected.

The method cannot differentiate between congested or free

flow sensor clusters because it is unsupervised.

4) DenGraph: The DenGraph algorithm [14] is a density-

based community detection algorithm. In the implementation,

first, the edges of the base graph are weighted with sensor

readings, i.e, density values, at the destination vertex. In this

implementation, the vertices are clustered together based on

the distance between them. We used the following rules for

assigning distance between two vertices, u and v in the graph:

dist(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

0 u = v
1

Wu,v
∃(u, v) ∈ E

undefined otherwise,

(2)

Where, Wu,v is the weight of the edge between vertices u
and v. Note that there is at most one edge between each pair

of vertices in the base graph. The distance between pairs of

vertices that are not connected in the graph is undefined.

As this is the non-incremental version of the algorithm,

it is run on the entire set of weighted edges from the

graph (weighted with the sensor measurements from a single

minute). The algorithm essentially does a depth-first search

from all core vertices, i.e, the vertices having η neighbours

in a radius ε, in the graph, finding density-connected vertices

and assigning them the same cluster ID as the core vertex at

the start of the density-connected chain of vertices.

1019

B. Streaming Based Algorithms

1) Connected Components: The streaming Connected

Components algorithm [15] is a union-find algorithm that op-

erates on a stream of edges. In the streaming implementation,

first, the edges containing a value less than the congestion

threshold are filtered out. Next, the single-pass Connected

Components algorithm is run over the remaining edges. A

data structure is maintained as ”memory state” for recording

Connected Components. For every input edge, it is checked if

the end-vertices belong to the components present are present

in the memory state or not. Based on that the merging and

assignment of components’ IDs are done. Algorithm 1 shows

the pseudocode of streaming Connected Components, where

M is the memory state containing component IDs and the

corresponding vertices belonging to the component.

Input: Stream of filtered edges E
Output: Components IDs for each vertex in E
begin

foreach edge (u, v) do
if M contains neither u nor v then

/* Neither vertex has been seen
before */

create new component with ID min(u.ID,
v.ID) and assign u and v to it

end
else if M contains both u and v then

/* Both vertices have been seen
before */

if u and v are in different components then
merge the two components c1, c2 and

set the ID of the new component to

min(c1.ID, c2.ID)
end

end
else

/* Only one of the vertices has
been seen before */

if u is in a component, add v to the same

component, and vice versa
end

end
end

Algorithm 1: Streaming Connected Components

Since in our case, the sensor values are coming every

minute, we reset the in-memory state M every minute for

the incoming stream.

2) DenGraph: The incremental version of DenGraph works

on a stream of edges. It maintains the memory state con-

taining clustering result to incorporate each incoming edge.

The effect an incoming edge can have on the clustering is

either positive or negative. Positive changes refer to new

edges being added, or the distance between two previously

processed vertices being reduced so that they enter the ε-

Fig. 3: Radar sensors on Stockholm highway.

neighborhood of each other. A negative change occurs if the

distance between two vertices that were previously within each

other’s neighborhoods increases so that they no longer fall

in each other’s neighborhoods, or the edge between them is

removed entirely. The memory state is reset in the incremental

DenGraph algorithm after processing each minute of sensor

data. Since the state is reset, only positive changes to the

clustering occur.

In response to a positive change the following updates to

the clustering may happen [14]: 1) A new cluster is created if

vertices previously not part of a cluster become core vertices

after the positive change, 2) Former noise vertices become part

of an existing cluster, if they become density-reachable from

a core vertex, and 3) A new neighborhood is formed which

contains core vertices that belong to different clusters. These

clusters are merged to form a new cluster.

Algorithm 2 shows the pseudocode for DenGraph, where

M is the state maintained in memory indicating the vertices

and their cluster information and positiveUpdate() cor-

responding to a positive change. We modified the DenGraph

algorithm to not give overlapping communities.

IV. IMPLEMENTATION

1) DataSet: The traffic data set we use in our work is pro-

vided by the Swedish Transport Administration (Trafikverket).

The data is taken from radar sensors placed on Stockholm

highways, as shown in Fig. 3. These sensors are placed per

lane every 150-400 meters on the highways recording the

average flow f and speed v of vehicles passing the sensors per

minute. In addition to the measurements, the data set contains

1) information about the road each sensor is placed on, 2) a

kilometer reference giving the location of the sensor relative

to the start of the road, 3) the lane each detector is monitoring,

and 4) the GPS coordinates of each sensor.

2) Graph Construction: Sensor graph is created using the

data set mentioned in Section IV-1. The constructed sensor

graph is a directed graph where vertices represent the sensors,

and the edges represent the road segments between the sensors.

A path in the graph is a possible road path for vehicles on the

highway. Two types of graphs were constructed, a base graph
and a reachability graph. In the base graph, sensors present on

the same lane are connected with edges, as in Fig. 4a. Paths

1020

Function PositiveUpdate(Vertex v, ε, η)
if Nε(v) ≥ η then

/* This is a core vertex */
Collect all distinct cluster IDs of core vertices in

Nε(v), along with v.clusterId if v is a core

vertex.

if setOfDistinctClusterIds.size == 0 then
/* Create new cluster */
Create new cluster. Assign v and all vertices

u ∈ Nε(v) to cluster. Mark all vertices

u ∈ Nε(v) as border vertices.
end
if setOfDistinctClusterIds.size == 1 and v.state
!= core then
/* v and its neighborhood is

absorbed to an existing
cluster */

Vertex v and all non-core vertices u ∈ Nε(v)
assigned to existing cluster. Mark all

non-core vertices u ∈ Nε(v) as border

vertices.
end
if setOfDistinctClusterIds.size > 1 then

/* Merging of clusters */
Create new cluster.

Assign v and all vertices {u ∈ M |
u.clusterId ∈ setOfDistinctClusterIds}
to new cluster. Assign all non-core vertices

u ∈ Nε(v) to new cluster and mark them as

border vertices.
end
v.state = core

end
end

Algorithm 2: Incremental DenGraph’s PositiveUpdate

method. Adapted from [16].

in the base graph depict paths that vehicles take if they drive

without changing lanes. Whereas, in the reachability graph, the

sensors on a given kilometer reference N are connected to all

sensors at the next kilometer reference N + 1, as in Fig. 4b.

Paths in the reachability graph depict the paths a vehicle might

take if it changes lanes.

The graphs that we constructed were based on data taken

from the year 2016 onwards. These graphs consisted of 2037

sensors, i.e, vertices, and 2077 edges.

3) Graph Usage: We have used the base graph is for con-

gestion detection methods. It allows tracking the congestion

in the lanes. The reachability graph can then be used to

send warnings to the vehicles moving upstream towards the

congested area. The graph is weighted and directed, where

each edge contains a source and destination vertex. Edges

are weighted based on the measurements of the destination

vertex sensor. These weights are updated every minute during

(a) Base graph: Sensors on the same lane are connected with
edges.

(b) Reachability graph: Each sensor is connected to sensors
on the next Km reference.

Fig. 4: The two road network graphs over three lanes.

processing because the sensor readings are taken every minute.

There were some sensors having no incoming edges to repre-

sent their readings. In order to record readings of these sensors

having no incoming edges, dummy sensors were placed with

outgoing edges towards them. The weight of these edges was

based on the readings of these sensors.

4) System Architecture: Our work is implemented using

Apache Spark [5]. It is a distributed data processing engine

that provides support for both batch and stream processing

over big data. We have used Spark GraphFrames for creating

our sensor graphs and Spark Structured Streaming API for

implementing the congestion detection algorithms.

V. EVALUATION

A. Ground Truth

One of the challenges we faced in our work was finding the

ground truth about congested queues because it is not directly

measured in the data. Other works mentioned in Section VI

use ground truth based on video recording of road traffic [17],

traffic simulators to simulate the behaviour of real traffic for

having access to ground truth [18], identifying and labeling

the ground truth using domain experts or using data fusion

techniques with external datasets such as accident reports [19].

In our work, we generate heat maps of measured values

and use them as ground truth for comparing them with the

congestion detection algorithm results. These maps are useful

for showing the spatiotemporal pattern of measured traffic

readings. We have selected various congested traffic areas on

1021

the road and generated their heat maps for the evaluation of

the congestion detection algorithms.

B. Experimental Setup
We performed our experiments using a local machine

comprising of 2.5 GHz quad-core processor and 16 GB of

RAM. We used Apache Spark v2.3.1 with 8 threads (using

the local configuration) and with 1 GB memory allocated for

the driver, along with Kafka v1.1. The congestion detection

algorithms were written using with Java v1.8. Data preparation

and analysis of results was performed with PySpark, Spark’s

Python API, using Python v3.6.3.

C. Batch Approaches
We show only results for Louvain Modularity and Hier-

archical Clustering from batch approaches. The results for

Connected Components and DenGraph are shown next in the

streaming Section V-D since they are identical to the results

generated when running in a batch fashion. The results of

the batch algorithms were compared to the congestion pattern

observed in the heat map of density values given below in

Fig.5a. These measurements are taken from the road E4N,

lane 1. The x-axis here represents the time and the y-axis

represents the sensors ordered by km reference. The dark

shades in the heat map depict high density, i.e, the congestion

pattern flowing from left to right. Next, we explain the results

from Louvain Modularity and Hierarchical Clustering on the

same observed congestion pattern.
1) Louvain Modularity: The Louvain Modularity algorithm

was run, minute-by-minute with one iteration per minute.

Fig.5b shows the communities detected by the algorithm. We

expect the sensors with readings showing congestion mea-

surements to be in same community. Adjacent cells within a

column, belonging to the same community, are shown with the

same color. We can observe that the results from the Louvain

Modularity algorithm do not reflect the observed congestion

pattern in Fig.5a. These results make the modularity approach

for community detection unsuitable for sparse graphs.
2) Hierarchical Clustering: Hierarchical Clustering was

also run, minute-by-minute. The results for this algorithm,

with the resulting hierarchical tree of clusters cut to generate

two clusters (free flow and congested), are shown in Fig.5c.

Adjacent cells within a column, belonging to the same cluster,

are shown with the same color. The algorithm requires that

the difference between the free flow and congested state, in

terms of both density and average speed, to be large in order to

precisely group the sensors. Finer details in the congestion pat-

tern, such as the dissipation of the topmost queue in Fig.5a, are

not detected without introducing considerable noise. Further-

more, the method requires two steps; a clustering step followed

by the computation of Connected Components. Therefore, the

Connected Components and DenGraph congestion detection

methods are more suitable.

D. Streaming Approaches
For evaluating the streaming algorithms, we chose eight

congestion patterns from different times of the day on 2016-

(a) Observed congestion pattern from sensor measurement

(b) Communities detected using Louvain Modularity

(c) Communities detected using Hierarchical Clustering with
average density within community > 30 vehicles/km.

Fig. 5: Heat maps of measured (a) density values; Congestion

detection results using (b) Louvain Modularity and (c) Hier-

archical Clustering algorithms. For the highway E4N lane 1,

2016-11-01 16:20-18:20.

11-1. Since the Connected Components algorithm makes use

of average speed values taken from the sensors, we compare

the components generated by Connected Components with the

average speed measurements heat map of a selected congested

area, as shown in Fig.6a. The light shade here indicates the

group of sensors showing low speed, i.e, high density and

congestion. Whereas, results from DenGraph are compared to

the density based heat map, shown in Fig.6c. The dark shade

1022

here indicates the group of sensors showing high density and

congestion. In these maps, the x-axis represents the time and

the y-axis represents the sensors ordered by km reference.

The green boundary represents one queue and the yellow

boundaries indicate three shockwaves.

1) Connected Components: The heat map generated using

the Connected Components (CC) algorithm is shown in Fig.6b.

The heat map shows similar congestion pattern as the one in

the measured speed values in Fig.6a. Queue and shockwaves

are visible in the heat map generated using CC.

2) DenGraph: The heat map generated using DenGraph

(Fig.6d) shows similar congestion pattern as the one generated

using the measured density values in Fig.6c. Queue and shock-

waves are visible in the heat map generated using DenGraph.

E. Comparison of Streaming Approaches

According to our results, since the streaming Connected

Components (CC) and DenGraph (DG) were able to detect

congestion patterns in road traffic, now we want to compare

their accuracy and performance. For the accuracy, we chose

eight different congestion patterns containing 16 queues and

15 shockwaves and measured the number of queues and

shockwaves correctly detected using these algorithms. For

performance, we measure the trigger time of these algorithms.

1) Accuracy: Table I shows the accuracy evaluation for CC

and DG using various input parameters for these algorithms.

The recall indicates the actual queues found by the algorithm.

WSM is the weighted sum computed using 75% recall fraction

of queues and 25% recall of shockwaves. It is used to get an

overall score of detecting queues and shockwaves.

According to our accuracy results, CC with class threshold

5 detects the highest number of queues with a greater recall.

Also, CC with class threshold 9 is able to determine the

maximum number of shockwaves. Overall the weighted score

WSM for CC with class threshold 5 is higher than the others,

indicating it to be better than the others in determining queues

and shockwaves. However, there is a trade-off between queue

and shockwave detection using various CC parameters. As we

increase the class threshold beyond 5, the number of detected

queues decrease and shockwaves increase.

2) Performance: To evaluate the performance of CC and

DG we consider the following metrics: 1) The trigger exe-

cution time, i.e, the time taken to process per minute sensor

data, 2) the throughput, i.e, the number of rows processed per

second and, 3) the average memory used per trigger.

Fig.7a shows the trigger time of CC and DG in milliseconds.

CC with class threshold 1 has the highest trigger execution

time. Whereas, DG with ε = 0, 035 has the lowest trigger

execution time. Overall, DG has low trigger execution time,

which makes it faster than CC. For the throughout results

plotted in Fig.7b, CC with class threshold 1 and 7 processes the

lowest number of records. DG, on the other hand, has overall

higher throughout with ε = 0, 035 giving the best throughput.

Lastly, in terms of memory DG uses a constant amount of

memory on average, i.e, 965.71 KB. The memory used by

Found
queues

Queue
recall

Found
shock-
waves

Shock-
wave
recall

WSM

CC (c. class 1) 1 6.3% 0 0% 0.05
CC (c. class 3) 5 31.3% 1 6.7% 0.25
CC (c. class 5) 15 93.8% 10 66.7% 0.87
CC (c. class 7) 13 81.3% 12 80% 0.81
CC (c. class 9) 9 56.3% 14 93.3% 0.66

DG (ε = 0, 025) 3 18.8% 10 66.7% 0.31
DG (ε = 0, 03) 4 25% 11 73.3% 0.37
DG (ε = 0, 035) 13 81.3% 11 73.3% 0.79
DG (ε = 0, 04) 14 87.5% 6 40% 0.76
DG (ε = 0, 045) 12 75% 2 13.3% 0.60
DG (ε = 0, 05) 5 31.3% 0 0% 0.23

TABLE I: Accuracy evaluation for Connected Components CC

and DenGraph DG. The minimum number of nodes required

in a neighborhood for it to be considered a cluster in Dengraph

was kept constant at η = 2.

CC is plotted in Fig.7c indicating less usage of memory by

CC compared to DG.

Findings: Our results indicate that 1) Louvain Modularity is

unable to detect congestion patterns in the data, and Hierarchi-

cal Clustering can detect congestion patterns with a low level

of detail 2) Connected Components and DenGraph can detect

queues and shockwaves, with Connected Components showing

better accuracy and being memory efficient, and DenGraph

being faster with better throughput.

VI. DISCUSSION AND RELATED WORK

A number of interesting works exist for congestion detec-

tion. The most widely used congestion detection system is

Google Maps; it uses GPS coordinates from users phones to

track the speed for congestion detection. Besides this, Coifman

[17] uses dual loop detectors to track the vehicles. Another

work by Li et al. [18] uses a density-based algorithm to

identify hot routes in the road network. This algorithm is also

executed on a graph of the road network, with road segments

as edges and intersection as vertices, and the algorithm is

similar to the DenGraph algorithm used in our work. However,

the graph in our work is different because we have a sensor

graph, also we are exploring streaming algorithms for real-time

queue detection. Table II presents a summary of congestion

detection methods proposed in related and our work. We have

not compared our work with related work by evaluation exper-

iments because we have not got access to implementation and

data sets of related work. Congestion detection techniques can

also be used for predicting future congestion by first predicting

traffic using different time-series prediction techniques [20],

[21], and then detecting congestion in the predicted traffic.

VII. CONCLUSION AND FUTURE WORK

In this work, we have studied the use of stream process-

ing algorithms for Connected Components and community

detection to identify groups in weighted graphs representing

road infrastructure traffic sensors. The detected sensor groups

reflect traffic states, e.g, free flow and congestion state. We

have adapted, implemented and evaluated four algorithms,

1023

(a) Heat map of the measured speed values. A queue delimited
by green border and three shockwaves in yellow border

(b) Congestion pattern from Connected Components algorithm
using class threshold 7

(c) Heat map of the measured density values. A queue delim-
ited by green border and three shockwaves in yellow border

(d) Congestion pattern from DenGraph community detection
algorithm using ε = 0, 03

Fig. 6: Heat maps of measured (a) average speed and (c) density values; Congestion detection results using (b) CC and (d)

DenGraph algorithms. For the highway E4N, 2016-11-01 06:10-08:10.

(a) Trigger execution time (b) Number of rows processed per second (c) Average memory used per trigger

Fig. 7: Performance comparison of Connected Components (CC) and DenGraph (DG)

namely, Louvain Modularity, DenGraph community detec-

tion, Connected Components, and Hierarchical Clustering, for

congestion detection in road traffic. These algorithms were

applied on directed weighted graphs created using sensors and

their measured values obtained from the Motorway Control

System operated by the Swedish traffic authority. Connected

Components (CC) and DenGraph (DG) algorithms have shown

good results in terms of detecting the congestion queues and

shockwaves with CC using less memory and being more

accurate, while DG being faster. CC takes longer to process

the data, with about 4.5 seconds for processing one-minute

records, while DG is more than twice faster taking about 1.5

seconds. In terms of accuracy, CC performs slightly better with

94% accuracy compared to DG with 88%.

Our evaluation shows that Louvain Modularity is unable to

detect congestion regions and Hierarchical Clustering is able

to detect congestion without details that include shockwaves.

In particular, Louvain Modularity algorithm shows poor per-

formance on sparse graphs. Using the Hierarchical Clustering

algorithm requires that the difference between the free flow

and congested state, in terms of both density and average

speed, to be large in order to precisely group the sensors.

For future work, we suggest different dimensions that can be

explored related to this work. Scalability is one major concern

1024

Data Source Measured
Parameters

Purpose Method Limitations Evaluation

Google maps
[22]

Mobile phones
and probe
vehicles

Speed values Congestion
detection

Not disclosed Privacy
concern

Not applicable

Coifman [17] Loop detectors Vehicle
trajectory

Congestion
detection

Vehicles measurements are
matched between stations

Cannot detect
small vehicles
accurately

Up-to 50% for long vehicles

Anbaroglu
[19]

Cameras Link Journey
Times

Non-recurrent
congestion
events

Measures Link Journey
Times on a graph where
cameras are vertices, road
between them are edges

Cannot detect
usual traffic
jams

Link Journey Times higher
than 40% of their expected
values indicate a Non-
Recurrent Congestion event

Li [18] Probe
Vehicles,
traffic
simulator

Vehicle trajec-
tories and den-
sity values

Hot routes Density based clustering on a
graph where vertices are in-
tersection or landmarks and
edges are road segments be-
tween them

Synthetic
dataset

Efficiently discovers hot
routes

Our work Radar sensors Speed, flow
and density
values of
traffic

Congestion
detection

Uses Connected Components
and community detection
methods on a graph of road
sensors

Cannot work
with probe
vehicles

Connected Components can
detect congestion with accu-
racy at best up to 94% and
DenGraph up to 88%

TABLE II: Congestion detection methods

especially because the number of sensors is increasing every

year. Another subject for future work is to do end-of-queue

detection for creating an efficient warning system for vehicles

approaching the traffic jam queues. Lastly, evolutionary clus-

tering can also be explored for keeping track of the queues in

the road traffic. We also plan to explore applying this approach

to other application domains where spatiotemporal data can be

modelled in the form of weighted graphs.

ACKNOWLEDGMENT

This work was supported by the Erasmus Mundus Joint

Doctorate in Distributed Computing (EMJD-DC) funded by

the Education, Audiovisual and Culture Executive Agency

(EACEA) of the European Commission under FPA 2012-

0030, by the project BADA: Big Automotive Data Analytics

in the funding program FFI: Strategic Vehicle Research and

Innovation (grant 2015-00677) administrated by VINNOVA

the Swedish government agency for innovation systems, and

by the project BIDAF: Big Data Analytics Framework for a

Smart Society (grant 20140221) funded by KKS the Swedish

Knowledge Foundation.

REFERENCES

[1] M. Barth and K. Boriboonsomsin, “Real-World CO2 Impacts of Traffic
Congestion,” p. 24.

[2] U. States., Vehicle- and infrastructure-based technology for the preven-
tion of rear-end collisions [electronic resource]. National Transporta-
tion Safety Board Washington, D.C, 2001.

[3] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algorithms for graph
manipulation,” Communications of the ACM, vol. 16, no. 6, pp. 372–378,
1973.

[4] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[5] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[6] M. J. Lighthill and G. B. Whitham, “On kinematic waves ii. a theory
of traffic flow on long crowded roads,” Proc. R. Soc. Lond. A, vol. 229,
no. 1178, pp. 317–345, 1955.

[7] B. S. Kerner, The physics of traffic: empirical freeway pattern features,
engineering applications, and theory. Berlin: Springer, 2010.

[8] H. Rehborn and J. Palmer, “ASDA/FOTO based on Kerner’s three-
phase traffic theory in North Rhine-Westphalia and its integration into
vehicles.” IEEE, Jun. 2008, pp. 186–191.

[9] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishi-
nari, S.-i. Tadaki, and S. Yukawa, “Traffic jams without bottlenecksex-
perimental evidence for the physical mechanism of the formation of a
jam,” New Journal of Physics, vol. 10, no. 3, p. 033001, Mar. 2008.

[10] Highway Capacity Manual: volume 1: concepts. Washington: Trans-
portation research board, 2010.

[11] L. Elefteriadou, An introduction to traffic flow theory, ser. Springer
optimization and its applications. New York: Springer, 2014, vol. 84.

[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[13] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[14] T. Falkowski, A. Barth, and M. Spiliopoulou, “Studying Community
Dynamics with an Incremental Graph Mining Algorithm,” p. 12, 2008.

[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang, “Graph
distances in the data-stream model,” SIAM Journal on Computing,
vol. 38, no. 5, pp. 1709–1727, 2008.

[16] T. Falkowski, “Community analysis in dynamic social networks,” Ph.D.
dissertation, Ph. D. dissertation, angenommen durch die Fakultat fur
Informatik der Otto-von-Guericke-Universität, 2009.

[17] B. Coifman, “Identifying the onset of congestion rapidly with existing
traffic detectors,” Transportation Research Part A: Policy and Practice,
vol. 37, no. 3, pp. 277–291, Mar. 2003.

[18] X. Li, J. Han, J.-G. Lee, and H. Gonzalez, “Traffic Density-Based
Discovery of Hot Routes in Road Networks,” in Advances in Spatial
and Temporal Databases, D. Papadias, D. Zhang, and G. Kollios, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, vol. 4605, pp.
441–459.

[19] B. Anbaroglu, B. Heydecker, and T. Cheng, “Spatio-temporal clustering
for non-recurrent traffic congestion detection on urban road networks,”
Transportation Research Part C: Emerging Technologies, vol. 48, pp.
47–65, Nov. 2014.

[20] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular
traffic flow as a seasonal arima process: Theoretical basis and empirical
results,” Journal of transportation engineering, vol. 129, no. 6, pp. 664–
672, 2003.

[21] Z. Abbas, A. Al-Shishtawy, S. Girdzijauskas, and V. Vlassov, “Short-
term traffic prediction using long short-term memory neural networks,”
in 2018 IEEE International Congress on Big Data (BigData Congress),
July 2018, pp. 57–65.

[22] “The bright side of sitting in traffic: Crowdsourcing road congestion
data.” [Online]. Available: https://googleblog.blogspot.com/2009/08/
bright-side-of-sitting-in-traffic.html

1025

