
Optimizing Windowed Aggregation over Geo-Distributed Data Streams

Hooman Peiro Sajjad, Vladimir Vlassov

Department of Software and Computer Systems
KTH Royal Institute of Technology

Stockholm, Sweden
Email: {shps,vladv}@kth.se

Ying Liu

Department of Meteorology
Stockholm University
Stockholm, Sweden

Email: liu.ying@misu.su.se

Abstract—Real-time data analytics is essential since more
and more applications require online decision making in a
timely manner. However, efficient analysis of geo-distributed
data streams is challenging. This is because data needs to be
collected from all edge data centers, which aggregate data from
local sources, in order to process most of the analytic tasks.
Thus, most of the time edge data centers need to transfer data
to a central data center over a wide area network, which is
expensive.

In this paper, we advocate for a coordinated approach of
edge data centers in order to handle these analytic tasks
efficiently and hence, reducing the communication cost among
data centers. We focus on the windowed aggregation of data
streams, which has been widely used in stream analytics. In
general, aggregation of data streams among edge data centers
in the same region reduces the amount of data that needs to
be sent over cross-region communication links. Based on state-
of-the-art research, we leverage intra-region links and design
a low-overhead coordination algorithm that optimizes commu-
nication cost for data aggregation. Our algorithm has been
evaluated using synthetic and Big Data Benchmark datasets.
The evaluation results show that our algorithm reduces the
bandwidth cost up to ∼ 6×, as compared to the state-of-the-
art solution.

Keywords-geo-distributed; data analytics; stream processing;
aggregation; WAN analytics

I. INTRODUCTION

More and more global scale organizations are in need of

constant monitoring and real-time analytics of their data,

including user actions, server logs, and sensor readings.

It helps them to extract meaningful information and make

important business decisions, such as product recommenda-

tions or fraud detection, in a timely manner. Often, users

are served from servers in proximate distance in order to

achieve satisfactory service latency and cost of network

traffic [1], [2]. Thus, data are constantly being collected

on tens to hundreds of geographically distributed edge

data centers (edge) that are proximate to users. However,

efficient analysis of geo-distributed data is challenging. This

is because data needs to be collected from all the edges in

order to process analytic tasks. During this process, data

needs to be transferred over wide area networks, which is

very expensive [3].
There exist a few works on optimizing streaming analytics

in the wide area. However, to the best of our knowledge,

state-of-the-art solutions [4]–[6] do not consider the hetero-

geneous communication costs among data centers, which

is an essential factor in achieving efficient stream aggre-

gation. To be precise, the cost of communication among

edges in the same region, country, or continent is mostly,

if not always, lower than inter-region, inter-country, or

inter-continent communications. This phenomenon is also

evidenced by the data transfer pricing policies of the major

Cloud service providers including Amazon AWS [7], and

Google Cloud [8]. Therefore, considering network hetero-

geneity is important in order to achieve a cost-efficient

solution.
We focus our study on the windowed aggregation of data

streams, which has been widely used in streaming analyt-

ics [9], [10], including commercial services such as Azure

Stream Analytics [11], and Amazon Kinesis Analytics [12].

Specifically, an aggregate query over data stream is defined

by an aggregate operator (e.g., sum, count, and bloom filters)

in a windowed fashion (e.g., every ten minutes or one

hour), and optionally with a group-by clause (e.g., a network

monitoring system may require aggregate data based on zip

codes, or network providers). Aggregate queries are mainly

defined as standing queries for a variety of applications, such

as web analytics, network monitoring, and applications that

continuously generate rapid and large volumes of data.
A common approach for processing aggregate queries

of geo-distributed data streams follows a hub-and-spoke

model, in which edges send data streams directly to a central

location (core). This approach is inefficient, because it does

not consider heterogeneity of networks among edges and

core. Alternatively, we propose a solution that coordinates

windowed aggregations among edges, which can signifi-

cantly reduce bandwidth cost. Essentially, edges connected

with low-cost links can transfer and aggregate data streams

among each other before communicating with the core

over expensive links. In this paper, we provide a low-

overhead coordination method for windowed aggregation

of geo-distributed data streams, by answering the following

questions:

• What is the theoretical minimum bandwidth cost for
aggregating data steams from edges and how close we
can get?

33

2018 IEEE International Conference on Edge Computing

978-1-5386-7238-9/18/$31.00 ©2018 IEEE
DOI 10.1109/EDGE.2018.00012

Figure 1: Edges grouped in regions with respect to their bandwidth cost.

• How to identify relevant data among edges and aggre-
gate them effectively and efficiently?

• How to send data streams among edges and core in a
timely manner?

The contributions of this paper are as follows:

• To the best of our knowledge, this is the first work

which demonstrates that coordination of edges for

windowed aggregation can further reduce bandwidth

cost.

• We provide a low-overhead coordination method for

aggregation of geographically distributed data streams,

which includes an online algorithm that dynamically

adapts to workload changes.

• We evaluate and compare the proposed coordinated

aggregation with state-of-the-art algorithms.

II. SYSTEM MODEL

Assume that a data stream is built of key-value tuples

< k, v >. Keys are generated by hashing a single or multiple

attributes of data records specified by a group-by clause. We

call a set of tuples with the same key k a group. A grouped

aggregation over a time period is defined as the aggregate

of values for each key over a time window w, e.g., every

30 minutes, every hour, or every day. Examples of aggregate

operators include counts, sum, min, max, and HyperLogLog

merge. As data can be streamed in from multiple sources,

each of the edges receives a subset of tuples that belong

to the window specified in the windowed aggregation query.

Some of aggregation operators such as sum, counts, min and

max, are based on commutative and associative operations,

e.g., addition, min, and max, respectively. Such aggregations

can be partitioned and distributed so that each of the edges

can compute a partial aggregate on those tuples in the

query window that it receives, e.g. a partial sum of stream

elements, and send the partial aggregate to the core that

computes the global aggregate, e.g. the sum of partial sums.

This allows reducing the amount of data transferred from

the edges to the core and, as a consequence, reducing the

communication cost. Some of the aggregations, such as the

average (arithmetic mean) that is not associative, cannot be

partitioned in the straight way, as described above. However

it is still possible to partition and distribute computation of

intermediate partial results of the aggregation in edges in

order to reduce the amount of data to be sent to the core.

For example, in the case of the average aggregation, each

edge can compute the sum and count of stream elements

in its partition of the query window, and send these results

to the core that collects all partial results and computes the

average as the sum of sums divided by the sum of counts.

We consider that a geo-distributed infrastructure is built

on top of tens or hundreds of data centers including large

central data centers and small edge data centers (edges).

Edges are grouped into regions, in which the communication

cost and latency among edges in a region are considerably

lower than inter-region communications (dashed ellipses in

Fig. 1). Edges receive data streams from their proximate data

sources, compute partial aggregates by a local algorithm, and

send them to the core. The final aggregate is computed at

the core.

III. OBLIVIOUS AND COORDINATED AGGREGATION

METHODS

Bandwidth cost and data staleness are important metrics

in distributed aggregation. Bandwidth cost is a significant

portion of operating expenses of internet-based services.

Data staleness is the difference between the current time

and the time stamp of the data [13]. We define staleness of

an aggregate as the difference between the time when the

aggregate has been computed and the latest time stamp of

the aggregated data.

A. Optimization Space

Two classic methods for aggregating geo-distributed data

streams are streaming, and batching. In the streaming

method each edge sends all incoming tuples to the core

without applying any local aggregations whereas in the

batching method each edge locally aggregates tuples and

emits local aggregates (update) only at the end of time

windows. The streaming method incurs excessive traffic

over costly WAN links as it sends all data to the core

while the batching method incurs maximum staleness as it

emits all updates at the end of time windows. Comparison

between the streaming and batching methods shows the

trade-off between optimizing result staleness and network

consumption.

We call an optimization method for distributed windowed

aggregation oblivious if edges do not interact with each

other when computing partial aggregates to be sent to the

core, and independently optimize the bandwidth cost and

result staleness [5]. We propose a coordinated aggregation

method for distributed windowed aggregation where edges

coordinate with each other to aggregate partial aggregates

before communicating with the core in order to minimize

the bandwidth cost while optimizing result staleness.

1) Cost: We argue that the coordinated method allows

reducing the bandwidth cost compared to the oblivious

method. Before providing more formal analysis, we illustrate

34

our argument with a simple example. Assume that with an

oblivious method, each edge sends its partial aggregate to

the core, whereas with a coordinated method all edges send

their partial aggregates to one of the edges that computes

the total aggregate and sends it to the core. Assume that

the cost of data transfer between two edges is c, and the

cost of edge-to-core data transfer is C = kc, where k � 1.

For example, Google Compute Engine charges inter-region

data transfer at least twice more than the intra-region data

transfer. The cost of inter-region data transfers depends on

the region and it can go up to 23 times more expensive

compared to intra-region data transfers. With the oblivious

method, the total cost of data transfer from m edges to

the core is Co = mkc, i.e., O(mk). With the coordinated

method, the total cost of data transfer between edges and the

core is Cc = (m−1)c+kc, i.e. O(m+k). The relative cost

saving of the coordinated method is 1− Cc

Co
= 1− (m+k−1)

mk ,

and it improves with increasing the number of edges m.

For example, if the edge-to-core communication cost is 18

times the edge-to-edge cost (k = 18), then the relative cost

saving using the coordinated method for two edges (m = 2)

is 47%, for three edges is 63%, for four edges is 71%, and

so on. The relative cost saving is at most 1 − 1
k , which is

the theoretical limit of the cost saving when the number of

edges m approaches infinity.

2) Staleness: Data staleness is the difference between the

current time and the time stamp of the data [13]. It indicates

how old the data is. Staleness of a windowed aggregate

can be defined as the difference between the time when

the aggregate has been computed (or becomes available)

and the latest time stamp of the aggregated tuples in the

window. We consider the staleness of the aggregate with

respect to the time when it becomes available at the core. It

is easy to see that the coordinated aggregation increases the

staleness by at least of one edge-to-edge latency, compared

to the oblivious aggregation. Assume a data stream of time-

stamped tuples. Each tuple includes its key k ∈ K, where K
is a set of all possible keys. Consider a windowed aggregate

query for the window [t, t+ w) of the length w. Using the

oblivious aggregation method, the staleness of an aggregate

for a key k is at least t + w + L − n
max
i=1

t
(k)
i ; where L

is the edge-to-core latency and t
(k)
i , i = 1, n are time

stamps of all tuples with the key k in the window. With

the coordinated method, an edge sends its partial aggregate

to another edge that forwards the final result to the core.

Therefore the staleness in the coordinated aggregation is at

least t+w+ l+ L− n
max
i=1

t
(k)
i ; where l is the edge-to-edge

latency. It is difficult to predict the communication latencies

L and l because most of networks are asynchronous and have

no upper bounds on latency. Nevertheless, one can expect

that reducing the amount of data sent to the core using the

coordinated method allows reducing network congestion and

hence improving the edge-to-core latency.

3) Trade-off between staleness and cost: Staleness of an

aggregate for a given key k can be reduced at least to L
for the oblivious and L + l for the coordinated method

if the aggregate could be sent to the core earlier than

the end of the window (t + w), in the ideal case, right

after the last occurrence of a tuple with the key k in the

window, i.e., at time
n

max
i=1

t
(k)
i . As the last occurrence is

difficult to predict and detect, updates of the aggregate

can be periodically sent to the core in order to maximize

opportunity for staleness reduction. This comes at the price

of increase of the communication cost by the factor of the

number of updates w/T , where T is the period of updates.

The more updates is the higher chance to reduce staleness.

B. Key Distribution and Bandwidth Cost

Consider m edges e1, . . . , em and a single core computing

a windowed aggregate query with a group-by-key clause on

a data stream arriving at the edges. Denote K = ∪m
i=1Ki

is the set of all possible keys in tuples that appear in the

window, where Ki is the set of keys in the tuples received by

edge ei. For simplicity, without losing generality, we assume

that an edge computes a partial aggregate, which we call

an update, for each of the keys it observes in the window.

Tuples with the same key may appear in one or several edges

as illustrated in Fig. 2 that depicts an example of a Venn

diagram for three sets of keys K1, K2 and K3, observed

by three edges e1, e2, and e3, respectively. For example,

keys K1 \ (K2∪K3) are observed only in the edge e1; keys

K1∩K2 are observed in two edges e1 and e2; whereas keys

K1 ∩K2 ∩K3 are observed in all three edges e1, e2, and

e3. Denote K̂r the set of keys that are observed in r distinct

edges such that K = ∪m
r=1K̂r and ∩m

r=1K̂r = ∅.
Assume, the cost of intra-region bandwidth of edge-

to-edge communication is c, and the cost of inter-region

bandwidth of edge-to-core communication is C � c. With

the oblivious aggregation method, each edge computes and

sends to the core an update for each of the keys it has

observed in the window. The core collects all updates and

computes final aggregates. The lower bound of the total

number of updates sent to the core in the oblivious method

is

Uo =
m∑

i=1

|Ki| =
m∑

r=1

r|K̂r| (1)

The minimal cost of the oblivious method is

Co = C × Uo = C ×
m∑

r=1

r|K̂r| (2)

With the coordinated method, if the same key is observed

in several edges than one of the edges can collect all updates

for that key and send the final aggregate to the core. The

total number of updates sent to the core is
∑m

r=1 |K̂r|;
whereas the total number of updates sent between edges

35

Figure 2: Venn diagram for three sets of keys K1, K2 and K3, observed
by three edges e1, e2 and e3 respectively.

is
∑m

r=1(r − 1)|K̂r|. Thus, the lower bound of the total

number of updates in the coordinated method is

Uc =
m∑

r=1

((r − 1)|K̂r|+ |K̂r|) =
m∑

r=1

r|K̂r| (3)

As we can see the total number of updates of the coordinated

method is equal to the number of updates of the oblivious

method; however the cost is different because of edge-

to-edge communication in the coordinated method. The

minimal cost of the coordinated method is

Cc =
m∑

r=1

((r − 1)|K̂r| × C + |K̂r| × c) (4)

Considering the bandwidth cost of the oblivious (Equa-

tion 2) and the optimal coordinated (Equation 4) methods,

we define the following theorem.

Theorem 1. The lower-bound bandwidth cost of the co-
ordinated aggregation is not greater than the lower-bound
bandwidth cost of the oblivious aggregation.

Proof: In the coordinated aggregation, the total number

of updates is the same as the total number of updates in

the oblivious aggregation that is
∑m

r=1 r|K̂r|. However, the

bandwidth cost of edge-to-edge updates in the coordinated

aggregation c is expected to be smaller than the bandwidth

cost of edge-to-core updates C � c in both methods.

This is because edge-to-edge updates are sent over low-cost

networks while edge-to-core updates are sent over high-cost

networks. The cost of the network transfer in the coordinated

method depends on the key identicality among the edges,

i.e., the total bandwidth cost of coordinated aggregation by

r edges having identical keys is (C + (r − 1) × c). Recall

that K̂r is the set of keys that are observed in r distinct

edges such that ∪m
r=1K̂r = K and ∩m

r=1K̂r = ∅. In the

worst case, there are no identical keys among edges, i.e.,

|K̂1| = |K| and |K̂r| = 0 for all r > 1. In this case, the

bandwidth cost in the coordinated aggregation is equal to

the bandwidth cost of the oblivious aggregation, |K|×C. It

is easy to see that if there is at least one key identical among

two edges, i.e., |K̂1| = |K| − 1, |K̂2| = 1 and |K̂r| = 0 for

all r > 2, then the total cost of the coordinated aggregation

is (|K| − 1)× C + c < |K| × C. In general case, having r

identical keys among r edges, the total cost of the coordi-

nated aggregation is (|K|− r)×C+(r−1)× c < |K|×C.

However, in practice, it is not possible to have global

knowledge about identical keys among edges without extra

overhead. Furthermore, it is not possible to know the last

update arrival time of keys in many applications. Therefore,

we formulate the problem such that we want to reduce the

bandwidth cost by local aggregation of tuples through low-

cost intra-region links and provide timely results. Our goal

is to provide a practical solution for the aforementioned

problem.

IV. COORDINATED SOLUTION

We design a coordinated method that uses predicted

workload characteristics in edges. Specifically, each edge

profiles its workload for predicting arrivals of keys during

time windows. Edges use the predictions for coordinating

aggregations among edges and deciding the time to emit

updates for each key.

A. Workload Prediction

A core component of the coordinated method is a module

that predicts workload in each edge. In general, predict-

ing workload accurately requires deep knowledge of the

incoming workload and sophisticated selection and tuning

of one or several prediction algorithms. As in previous

research [14], we assume that the incoming workload within

a window follows a Poisson distribution. Specifically, λki

denotes the incoming rate of a key k in a window i.
Note that in our future work, we intend to consider other

workload distributions with long-term trends, peaks, or other

patterns, and use other workload prediction algorithms, such

as ARIMA.

We predict expected arrival rate for each key using a

simple yet effective model, i.e., a weighted average of

historical arrival rates. Formally, λki is calculated by

n∑

j=1

W(i−j)λ
′
k(i−j) (5)

where λ
′
kj is the historical occurrence of k in window j; n is

the number of historical windows.Ws are weights for all n
historical windows, where

∑n
j=1 W(i−j) = 1. We consider

two methods for computing the weights. One is to assign

the same weight for all the historical windows. The other

method is for a specific Ws, its importance W
′
s is first

calculated using a exponentially fading W
′
s = βi−s, where

β is the fading parameter, which is between 0 and 1. Then,

Ws is calculated by normalizing the importance with all the

other windows using

Ws =
W

′
s∑n

j=1 W
′
(i−j)

(6)

36

B. Coordination Algorithm

We design a method to coordinate edges within a region

to aggregate tuples with identical keys. In every region, one

edge is assigned as coordinator, whereas other edges in the

region send information about the keys they own to the

coordinator. The coordinator assigns an edge for each key

as the key’s aggregation point (AP) and broadcasts the list

of APs to edges. APs are responsible for sending aggregate

updates to the core. Each edge sends updates for keys with

assigned APs to the corresponding APs; whereas updates for

the keys with no assigned APs are sent directly to the core.

Using the workload prediction method described in Sec-

tion IV-A, each edge estimates arrival rate λ of each key

within a window. At the end of the window, each edge

reports two types of sets to the coordinator: (i) a set of

nominated keys for their λ being higher than the threshold

a, and (ii) a set of the previously nominated keys with

λ < a − δ.a, where δ ∈ [0, 1] ⊂ R. The first set includes

tuples of keys and their estimated arrival rates (< ki, λi >).

The intuition is that each edge sends this set to nominate

itself to become an AP for the keys with high arrival rate.

The second set includes the keys that are not frequently

appearing anymore. This enables an edge to decommission

itself from being a potential AP for a key when the arrival

rate of the key drops. Note that setting δ to larger values can

prevent an edge to repeatedly nominate and decommission

itself.

The coordinator assigns APs based on the two aforemen-

tioned sets received from edges. It informs edges about APs

by broadcasting a set of keys and their corresponding APs to

all edges in its region. We define two policies for selecting

APs for keys: (i) minimum load (min load) policy, and (ii)

maximum arrival (max arrival) policy. The min load policy

tries to balance the number of keys assigned to each edge

as APs. However, the max arrival policy chooses edges with

the keys that have higher estimated arrival rates.

C. Update Management

To schedule updates departure from edges, we use the

method proposed by Heintz et al. [5], in which they model

the available bandwidth in edges as cache. The cache size

determines the number of keys that can be held for further

local aggregation and it dynamically changes during a win-

dow, which is divided into time steps. The cache size at time

step t is estimated based on the hybrid algorithm proposed

in [5].

Cache eviction occurs when the number of keys exceeds

the current cache size. Different eviction policies can be

applied such as Least Recently Used (LRU), and Least

Frequently Used (LFU). We also define a new eviction

policy based on the update arrival rate per key that we call

Least Estimated Arrival Rate (LEAR).

Each edge recomputes the cache size and schedules up-

dates at every time step, which may evict a set of keys

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

H=
1

Fa
d=
0.
9
H=
5

Fa
d=
0.
9
H=
10

Fa
d=
0.
5
H=
5

Fa
d=
0.
5
H=
10

AV
G
H=
5

AV
G
H=
10

Sa
m
e
M
ea
n

m
ea
n
sq
ua
re
d
er
ro
r

(a) Mean squared arrival error of the

workload predictions with different his-

tory sizes.

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

H1
+
LF
U

AV
G
H5
+
LF
U

SM
+
LF
U

H1
+
LE
AR

AV
G
H5
+
LE
AR

SM
+
LE
AR

up
da
te
s

(b) The effect of arrival rate prediction

on the number of updates being sent to

the core in the oblivious method.

Figure 3: Workload prediction methods.

from the cache and hence, emit their updates. We design the

coordinated method such that an edge may emit each update

either to the core or to an AP. To choose the destination of

an update, the edge checks whether any AP is assigned for

its corresponding key. If no AP has been assigned or the AP

of the key is the edge itself, it sends the update to the core.

Otherwise, it sends the update to the assigned AP.

V. EVALUATION

As a proof of concept, we have implemented a prototype

of the oblivious and the coordinated aggregation methods in

Java 1 in order to evaluate aggregation methods by means of

simulation. Evaluation of the prototype in the real distributed

infrastructure is a subject of our future work. As for data

stream traces, we use the dataset ”UserVisits” from Big Data

Benchmark [15], and synthetically generated workloads.

We compare our coordinated aggregation method with the

oblivious, optimal oblivious [5], batching, streaming, and

optimal coordinated methods. We have also implemented a

simple method, called all-to-one, in which edges send their

updates for all keys to a fixed aggregation point. In this

method only one edge is responsible to send all updates in

a region to the core. In fact, we consider all-to-one as the

baseline of the coordinated method. We configure all the

oblivious and the coordinated methods to employ the update

management (Section IV-C) with the same settings. We set

time step to 25 seconds. To simulate the transfer delay, we

assume that the updates emitted at each time step among

edges will be delivered by the end of the next time step.

In the coordinated method, we avoid sending any updates

among edges in the last timestep of each window, in contrast,

each edge directly sends their last updates to the core. We

apply this limitation to the coordinated method in order to

avoid over-speculation about the effect of edge coordination

on the latency.

1The source code of the prototype that includes the aggregation simulator
and the data generator is available at https://github.com/shps/coordinated-
aggregation-system.

37

0

1000

2000

3000

4000

5000

6000

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

Op
tim
al-
Co

ne
tw
or
k
tr
an
sf
er
s

edge-to-core edge-to-edge

(a) Uniform

0

1000

2000

3000

4000

5000

6000

7000

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

Op
tim
al-
Co

ne
tw
or
k
tr
an
sf
er
s

(b) Exponential

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

Op
tim
al-
Co

ne
tw
or
k
tr
an
sf
er
s

(c) All identical

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

Op
tim
al-
Co

ne
tw
or
k
tr
an
sf
er
s

(d) No identical

Figure 4: Number of updates in different aggregation methods with different workloads.

0

0.5

1

1.5

2

2.5

3

3.5

4

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

re
la
tiv
e
ne
tw
or
k
co
st

(a) Uniform

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

re
la
tiv
e
ne
tw
or
k
co
st

(b) Exponential

0

1

2

3

4

5

6

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

re
la
tiv
e
ne
tw
or
k
co
st

(c) All identical

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ob
liv
iou
s

Co
or
din
at
ed

Al
l-t
o-
on
e

Op
tim
al-
Ob

re
la
tiv
e
ne
tw
or
k
co
st

(d) No identical

Figure 5: Relative bandwidth cost normalized to the cost of an optimal coordinated method.

We have implemented our data generator, which is able

to create data streams with configurable distributions among

K̂r identical key sets (see Section III-B). We generate data

steams with 1000 keys and four types of distributions:

(i) uniform, (ii) exponentially ascending from K̂1 to K̂m,

(iii) all keys identical (all identical) among all edges, and

(iv) no keys are identical among edges. These four distribu-

tions of keys cover variety of distributions that may appear in

real-world queries. Keys are assigned to edges randomly and

their arrival rate is set randomly between 1 to 100 arrivals

per two hours.

A. Workload Prediction Policies

First, we evaluate our two workload prediction policies,

namely a policy based on fading windows (Fad), and a

policy based on equally weighted windows (AVG). In this

experiment, we use the synthetically generated workload.

We compute the mean squared error of the predicted arrival

rates. In Fig. 3(a), the results for the history sizes (H) 5,

and 10 are shown. The results are compared with two other

policies: (i) one that considers only the last window (i.e,

H = 1), and (ii) another that assumes the same arrival

rate for all keys, which is the mean arrival rate of all keys

during all windows (we call this offline policy Same Mean).

A warm up period of 10 windows is considered in order

to have fair results for the prediction methods that depend

on a history of 10 windows. As shown in Fig. 3(a), the

weighted average methods (AVG and Fad) predict arrival

rates more precisely than Same Mean and the last window

(H = 1) methods. The reason is that the weighted average

methods predict the arrival rate based on more sample data.

However, the evaluation shows that increasing the size of H ,

from 5 to 10 windows, does not considerably improve the

prediction accuracy. Fig. 3(b) shows the performance of the

update management in terms of number of updates it emits

by employing the prediction policies. The experiment is

done for a single edge. Two eviction policies are employed,

Least Frequently Used (LFU) and Least Estimated Arrival

Rate (LEAR). The results are normalized against the optimal

solution, in which the update management knows exact

arrival times of keys. As shown in Fig. 3(b), having a history

size of 5 windows improves the prediction and combining it

with LEAR eviction policy can reduce the number of updates

emitted to the core. The precision of the prediction is crucial

for the performance of the aggregation methods. Therefore,

for the rest of experiments, we choose the prediction policy

based on equally weighted windows with the history size of

5 windows (AVG H = 5).

Fig. 4 shows number of updates among 6 edges for

different aggregation methods and Fig. 5 depicts the network

cost. We assume that an edge-to-core update costs 18 times

larger than an edge-to-edge update. The window is set to 900

seconds and the threshold arrival rate for each key received

by an edge to be nominated as an AP is set to 3 tuples

per window. As it can be seen, the coordinated method

reduces the network transfer to the core by at least two

38

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7

ne
tw
or
k
tr
an
sf
er
s

time step

Oblivious e2c
Coordinated e2c
Coordinated e2e

(a) Average number of updates emitted

in different time steps per edge.

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

K
by
te
s

window

(b) Coordination overhead over intra-

region network.

Figure 6: The coordinated method performance for uniform workload. The
batching method emits on average 540 updates, whereas the streaming
method emits 3716 updates from each edge.

times compared to the oblivious method (Fig. 4(a)). The gain

grows when more keys are identical among edges (Fig. 4(b)

and Fig. 4(c)). The bandwidth cost for the coordinated

method is the same as the cost of the oblivious method

if there is no identical keys among edges (Fig. 5(d)), and

hence, no edge-to-edge communication. As expected, the

total number of network transfers including edge to edge and

edge to core, are almost the same in the coordinated and the

oblivious methods in all the experiments. This is because

both methods use the same update management method.

However, the oblivious method sends all the updates directly

to the core, while the coordinated method sends updates to

their correspondent APs whenever available.

B. Aggregation Methods

To compare aggregation methods in terms of data stal-

eness, we count the number of updates at each time step

because the distribution of updates among time steps im-

plicitly indicates data staleness. Fig. 6(a) shows the average

network transfers among all 6 edges in the last 8 timesteps

of a window for the uniform workload. The error bars

are the standard deviations. The number of edge-to-edge

(e2e) and edge-to-core (e2c) updates are shown separately

using different colors. As the figure shows, the coordinated

aggregation does not have any e2e transfers in the last

timestep and all the remaining updates are sent directly

to the core. Both methods emit roughly the same number

of updates in each time step. Note that out of 540 keys

observed at each edge, the coordinated aggregation only

emits 33% of the keys in the last time step and emits

67% of the keys in the earlier time steps. This means

that the coordinated aggregation is at least as effective as

the oblivious aggregation in reducing the data staleness.

However, the coordinated aggregation significantly reduces

the bandwidth cost (see Fig. 5).

We have evaluated the overhead of the coordination

method by measuring the total amount of metadata sent

between edges and between edges and the coordinator in

a window. The metadata include key IDs and arrival rates,

which are defined with long and float types respectively.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

3 6 9 12

up
da
te
s

number of edges

Oblivious core
Coordinated core
All-to-one core

Coordinated e2e
All-to-one e2e

(a) Number of updates.

1

2

3

4

5

6

7

8

9

10

11

3 6 9 12

re
la
tiv
e
ne
tw
or
k
co
st

number of edges

Oblivious
Coordinated
All-to-one

Optimal oblivious

(b) Bandwidth cost relative to the cost

of an optimal coordinated method.

Figure 7: Comparison of different aggregation methods as the number of
edges in a region increases.

Therefore, we can calculate the total size of the coordination

data in each window. Fig. 6(b) depicts the coordination

overhead for the first 9 windows using the uniform work-

load. The result underlines that the coordination overhead

of our algorithm is insignificant. The maximum amount

of transferred metadata is 70KBs that is in the second

window. That is when the edges, for the first time, want

to nominate their frequent keys to the coordinator. In the

later windows, the metadata transfer is mainly for changes

in APs. Note that the workload prediction predicts the arrival

rates more precisely as it collects more historical data. As it

can be seen, the amount even drops to below 1KB after 5

windows. It is worth to mention that the coordination data is

only propagated in the intra-region network, which is much

cheaper than inter-region network.

We have also evaluated the coordinated method with

varying number of edges and consequently, the amount of

streaming data. For this experiment, we use ”UserVisits”

data set [15], which are synthetically generated based on

server logs that record web page visits. We define the group-

by clause on the searchWord attribute of the data set. We

assume the data streaming rate in each edge is 1 tuple/second

and the window is set to one hour. Fig. 7 shows the results

as we increase the number of edges from 3 to 12 in a

region. The number of updates to the core increases using

all the methods except the coordinated method as shown in

Fig. 7(a). This is because the coordinated method can find

identical keys and send them to a correspondent AP. Since

the number of keys are limited, the increasing number of

edges does not create any extra traffic to the core over the

expensive inter-region network. In contrast, the oblivious

method cannot avoid the increase in emission of updates

to the core as the number of edges grows. The reason

that all-to-one method has an increasing number of updates

to the core is because only one edge is the aggregation

point for all the keys. Therefore, for a limited amount of

bandwidth, several keys are evacuated before they receive

all their updates.

39

VI. RELATED WORK

We discuss related work in three topics, namely, stream

processing systems, aggregation over data streams, and

wide-area data analytics.

1) Stream processing systems: The first streaming

databases such as Aurora [16] and its distributed descen-

dant Borealis [17], TelegraphCQ [18], and STREAM [19]

addressed the shortcomings of traditional data management

systems for unbounded data streams. These systems are

designed to process data streams in real-time and ex-

tend SQL language to support continuous queries. Their

promising results have motivated the next generation of

industrial large-scale stream processing systems, such as

Flink Streaming [20], Spark Streaming [21], Storm [22],

Heron [23], MillWheel [24], Google Dataflow [25], and

Kafka Streams [26]. However, these systems are designed to

work in a single data center environment and do not address

the specific challenges related to multi-data center stream

processing as we discuss in this paper.

2) Aggregation over data streams: Many data-parallel

programming models support grouped aggregate opera-

tors [10], [27], [28]. There have been several works in

optimizing the computation cost and memory usage in multi-

query aggregation systems [9], [29]–[31]. However, reducing

the bandwidth cost and result staleness is the primary goal

of this paper.

3) Wide-area data analytics: Most of recent researches

in wide-area analytics have focused on the optimization of

batch data processing [32]–[37], in which complete data

is needed for computation. However, batch analytics does

not fit for real-time and continuous processing of streaming

data. Heintz et al. provide solutions for grouped aggregation

over data streams for computing exact [5], [14] and ap-

proximated [38] aggregates. However, their work follows an

oblivious model. JetStream [4] provides an adaptive stream

computation with respect to available network bandwidth.

However, JetStream uses degradation techniques to reduce

the data size while in our work we consider the need for

exact result. Themis [39] provides distributed load shedding

algorithms for federated stream processing systems across

multiple sites. However, load shedding leads to approximate

results. The works in [40] and [41] provide solutions for

the placement of stream processing operators on arbitrary

networks to reduce bandwidth consumption and response

time. In comparison, our work assumes that operators are

already placed on edges and addresses the challenges of

aggregate optimization.

VII. CONCLUSIONS AND FUTURE WORK

Windowed aggregation has been widely used in streaming

analytics. In this paper, we optimized the bandwidth cost and

result staleness in windowed aggregation on multiple edge

data centers. We proposed that edges can reduce the band-

width cost by aggregating data within regions before sending

them over expensive cross-region links. Edges within a

region share data among each other in a coordinated way.

According to our evaluation results, our algorithm reduces

the bandwidth cost and result staleness effectively, as com-

pared to the state-of-the-art solution. As future work, we plan

to investigate on fault tolerance in windowed aggregation

of geo-distributed data streams. Data centers may become

inaccessible caused by either network or server failures.

Furthermore, redundant or late updates may happen due to

failures. We also intend to consider workload distributions,

other than Poisson, with long-term trends, peaks, or other

patterns, and use other workload prediction algorithms, such

as ARIMA.

REFERENCES

[1] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai net-
work: a platform for high-performance internet applications,”
ACM SIGOPS Operating Systems Review, vol. 44, no. 3, pp.
2–19, 2010.

[2] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and
R. Govindan, “Mapping the expansion of google’s serving
infrastructure,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 313–326.

[3] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The
cost of a cloud: research problems in data center networks,”
ACM SIGCOMM computer communication review, vol. 39,
no. 1, pp. 68–73, 2008.

[4] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman,
“Aggregation and degradation in jetstream: Streaming analyt-
ics in the wide area.” in NSDI, vol. 14, 2014, pp. 275–288.

[5] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing
timeliness and cost in geo-distributed streaming analytics,”
IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp.
1–1, 2017.

[6] W. Li, D. Niu, Y. Liu, S. Liu, and B. Li, “Wide-area spark
streaming: Automated routing and batch sizing,” in Autonomic
Computing (ICAC), 2017 IEEE International Conference on.
IEEE, 2017, pp. 33–38.

[7] Amazon ec2 pricing. [Online]. Available: https://aws.amazon.
com/ec2/pricing/on-demand/

[8] Google compute engine pricing. [Online]. Available: https:
//cloud.google.com/compute/pricing

[9] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly
sharing for streamed aggregation,” in Proceedings of the 2006
ACM SIGMOD international conference on Management of
data. ACM, 2006, pp. 623–634.

[10] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summing-
bird: A framework for integrating batch and online mapreduce
computations,” Proceedings of the VLDB Endowment, vol. 7,
no. 13, pp. 1441–1451, 2014.

[11] Azure stream analytics. [Online]. Available:
https://docs.microsoft.com/en-us/azure/stream-analytics/
stream-analytics-introduction

[12] Amazon kinesis analytics. [Online]. Available: https://aws.
amazon.com/kinesis/analytics/

[13] L. Golab, T. Johnson, and V. Shkapenyuk, “Scalable schedul-
ing of updates in streaming data warehouses,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 24, no. 6,
pp. 1092–1105, June 2012.

40

[14] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing
grouped aggregation in geo-distributed streaming analytics,”
in Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing. ACM,
2015, pp. 133–144.

[15] Big data benchmark dataset. [Online]. Available: https:
//amplab.cs.berkeley.edu/benchmark/v1/

[16] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Aurora: a new model and architecture for data stream man-
agement,” The VLDB JournalThe International Journal on
Very Large Data Bases, vol. 12, no. 2, pp. 120–139, 2003.

[17] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina et al., “The design of the borealis stream
processing engine.” in CIDR, vol. 5, 2005, pp. 277–289.

[18] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden,
F. Reiss, and M. A. Shah, “Telegraphcq: continuous dataflow
processing,” in Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. ACM,
2003, pp. 668–668.

[19] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom, “Stream:
The stanford data stream management system,” Book chapter,
2004.

[20] Apache flink. [Online]. Available: https://flink.apache.org/

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Re-
silient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Im-
plementation, ser. NSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 2–2.

[22] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
N. Bhagat, S. Mittal, and D. Ryaboy, “Storm@Twitter,”
in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’14. New
York, NY, USA: ACM, 2014, pp. 147–156.

[23] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter
heron: Stream processing at scale,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’15. New York, NY, USA: ACM, pp.
239–250.

[24] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haber-
man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle, “Millwheel: fault-tolerant stream processing at
internet scale,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, pp. 1033–1044, 2013.

[25] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt et al., “The dataflow model: a prac-
tical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp.
1792–1803, 2015.

[26] Kafka streams.

[27] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation
for data-parallel computing: interfaces and implementations,”
in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. ACM, 2009, pp. 247–260.

[28] K. Tangwongsan, M. Hirzel, and S. Schneider, “Low-latency
sliding-window aggregation in worst-case constant time,” in
Proceedings of the 11th ACM International Conference on
Distributed and Event-based Systems. ACM, 2017, pp. 66–
77.

[29] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrini-
dis, “Three-level processing of multiple aggregate continuous
queries,” in Data Engineering (ICDE), 2012 IEEE 28th
International Conference on. IEEE, 2012, pp. 929–940.

[30] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu,
“General incremental sliding-window aggregation,” Proceed-
ings of the VLDB Endowment, vol. 8, no. 7, pp. 702–713,
2015.

[31] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrini-
dis, “Optimized processing of multiple aggregate continuous
queries,” in Proceedings of the 20th ACM international con-
ference on Information and knowledge management. ACM,
2011, pp. 1515–1524.

[32] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues,
“Pixida: optimizing data parallel jobs in wide-area data ana-
lytics,” Proceedings of the VLDB Endowment, vol. 9, no. 2,
pp. 72–83, 2015.

[33] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clar-
inet: Wan-aware optimization for analytics queries,” in 12th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16). USENIX Association, 2016, pp.
435–450.

[34] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and
G. Varghese, “Wanalytics: Analytics for a geo-distributed
data-intensive world.” in CIDR, 2015.

[35] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese, “Global analytics in the face of bandwidth
and regulatory constraints,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15),
2015, pp. 323–336.

[36] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data ana-
lytics,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 421–434, 2015.

[37] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R.
Ganger, P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed
machine learning approaching lan speeds,” in 14th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI 17). USENIX Association.

[38] B. Heintz, A. Chandra, and R. K. Sitaraman, “Trading time-
liness and accuracy in geo-distributed streaming analytics,”
in Proceedings of the Seventh ACM Symposium on Cloud
Computing. ACM, 2016, pp. 361–373.

[39] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch,
“Themis: Fairness in federated stream processing under over-
load,” in Proceedings of the 2016 International Conference
on Management of Data. ACM, 2016, pp. 541–553.

[40] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer, “Network-aware operator place-
ment for stream-processing systems,” in Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Con-
ference on. IEEE, 2006, pp. 49–49.

[41] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Op-
timal operator placement for distributed stream processing
applications,” in Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems. ACM,
2016, pp. 69–80.

41

