
Hopsworks: Improving User Experience and
Development on Hadoop with Scalable, Strongly

Consistent Metadata

Mahmoud Ismail∗, Ermias Gebremeskel†, Theofilos Kakantousis†, Gautier Berthou† and Jim Dowling∗†
∗ KTH - Royal Institute of Technology, † RISE SICS

{maism, jdowling}@kth.se, {ermias.gebremeskel, tkak, gautier, jdowling}@sics.se

Abstract—Hadoop is a popular system for storing, managing,
and processing large volumes of data, but it has bare-bones
internal support for metadata, as metadata is a bottleneck and
less means more scalability. The result is a scalable platform with
rudimentary access control that is neither user- nor developer-
friendly. Also, metadata services that are built on Hadoop, such
as SQL-on-Hadoop, access control, data provenance, and data
governance are necessarily implemented as eventually consistent
services, resulting in increased development effort and more
brittle software.

In this paper, we present a new project-based multi-tenancy
model for Hadoop, built on a new distribution of Hadoop
that provides a distributed database backend for the Hadoop
Distributed Filesystem’s (HDFS) metadata layer. We extend
Hadoop’s metadata model to introduce projects, datasets, and
project-users as new core concepts that enable a user-friendly, UI-
driven Hadoop experience. As our metadata service is backed by
a transactional database, developers can easily extend metadata
by adding new tables and ensure the strong consistency of
extended metadata using both transactions and foreign keys.

I. INTRODUCTION

Apache Hadoop [1] is the most popular open-source plat-

form for storing and processing large volumes of data.

Hadoop’s core component is the Hadoop Distributed File

System (HDFS) [2] which is a distributed hierarchical file

system that scales up to thousands of machines, storing 100s of

PBs of data [3]. Hadoop also contains a resource management

service, YARN, that manages CPU and memory resources

on behalf of applications such as data parallel processing

frameworks (MapReduce [4], Flink [5], Spark [6]), key-value

stores (HBase [7]), and SQL-on-Hadoop services [8]. Both

HDFS and YARN store their metadata in-memory on a central

server (the Namenode and Resourcemanager, respectively). As

they are implemented in Java, the practical upper-bound on

the size of metadata is 2̃00 GB for HDFS [9], making it a

bottleneck limiting the size of Hadoop clusters. Hadoop de-

signers minimized the amount of metadata stored to optimize

for scalability, at the cost of rich and customizable metadata.

Data management was not a consideration in the original

design of Hadoop. HDFS long lacked the ability to easily

extend files with custom metadata to support features such as

fine-grained access control, free-text search of the namespace,

and data provenance [10], [11]. The lack of support for custom

metadata in HDFS made it difficult for systems running on

top to support efficient data management techniques [12].

Hadoop developers have the challenge of implementing meta-

data services in external systems and ensuring the consistency

of the external metadata with internal metadata such as file

metadata in HDFS, users in Kerberos, and applications in

YARN. Two-way synchronization of the external metadata

state with Hadoop’s internal metadata state is typically not

done, as it would overload services such as the NameNode.

For example, Hive does not actively check if the HDFS files

backing a SQL table still exist and are correct [8]. The lack of

two-way synchronization and Hadoop’s limited metadata has

meant that the platform has a static security model, lacking

attribute-based access control and dynamic roles. In Apache

Hadoop, if a dataset is shared with user Alice, the person

sharing the data has no control over what Alice does with the

data - from downloading it, to cross-linking it with external

data-sources.

Recently, an extension of HDFS, called HopsFS, has moved

the metadata to a scale-out, distributed database (MySQL

Cluster), supporting up to at least 24 TB of metadata and

providing at least 16X throughput [9]. HopsFS is a drop-in

replacement for HDFS where metadata can be easily extended

by adding tables to the database. Extended metadata can

be made strongly consistent with internal metadata using

transactions and foreign keys (for example, to remove a hive

table if the backing HDFS file(s) are removed).

Hopsworks Hadoop
Projects Clusters
Dynamic Roles Static ACLs
Datasets Files
Shared Datasets n/a
Kafka Topics n/a
Quotas (HDFS and Yarn) Quotas (HDFS only)
Jobs Applications and Jobs
Integrated Notebooks External Notebooks
SSL/TLS Kerberos

TABLE I: A comparison of the core concepts in Hopsworks and Hadoop.

In this paper, we present Hopsworks, a new project-based

multi-tenant platform for secure collaborative data analysis,

running on top of HopsFS and HopsYARN. In Hopsworks,

we leverage the extensibility of HopsFS to introduce three

new concepts to Hadoop: Projects, Datasets, and Project-
Users (dynamic roles). A Project is a collection of Datasets

and Users. Each Dataset has a home Project but can also

be securely shared with other Projects. As such, Hopsworks

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.41

2292

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.41

2289

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.41

2525

enables the secure sharing of sensitive datasets on a single

Hadoop platform. Data sharing does not require copying data

in Hopsworks. In Hopsworks, projects have their own isolated

subtree in HDFS (a sandbox) with project-specific users, im-

plementing dynamic roles, as well as per-project Kafka topics.

Datasets and topics can be securely shared between projects.

All of these features are enabled by extending metadata for

HDFS using both transactions and foreign keys (to ensure

strong consistency for the extended metadata). Another feature

unique to Hopsworks is CPU quotas for projects on YARN -

we listen for container events (start/stop of applications) and

transactionally update quota metadata appropriately. The new

abstractions introduced by Hopsworks, and their comparison

with corresponding concepts in Hadoop, are shown in table I.

Hopsworks provides, compared to Hadoop, a reduced number

of concepts that users need to learn for data management.

Hopsworks is an open source project [13] that supports auto-

mated deployment (using Chef and the Karamel orchestration

tool [14]) on Amazon AWS, Google GCE, OpenStack, and on-

premise bare metal clusters. Hopsworks has been running in

production since April 2016, providing Hadoop-as-a-Service

for researchers at a data center in Luleå, Sweden, and has been

presented at many industry conferences in 2016, including

Hadoop Strata London, Flink Forward, and Spark Summit

Europe.

II. SYSTEM OVERVIEW

HopsFS

HopsYARN

Hopsworks

Spark Flink MapReduce Kafka

...........

TensorFlow Zeppelin ePipe

ElasticSearch

BareMetal AWS GCEPlatform

Storage

Resource
Manager

Processing

Fig. 1: The system architecture for Hopsworks. A Hopsworks cluster can
be provisioned on different types of platforms; BareMetal, Amazon AWS,
and Google GCE. HopsFS is used in the storage layer, while HopsYARN
is used for scheduling resources. On top of HopsYARN and HopsFS, we
support different services such as Spark, Flink, MapReduce, Kafka, and so
on. Hopsworks, then provides an intuitive user interface for the services and
integrates them into the Project-Dataset model

Hopsworks is a multi-tenant data management and pro-

cessing Java EE web application running on top of Hops

Hadoop with integrated support for data parallel processing

frameworks such as Apache Spark, Apache Flink, and Ten-

sorflow, as well as Apache Kafka (a scalable message bus)

and interactive notebooks with Apache Zeppelin. We chose

Java as it has a lower impedance mismatch with the primary

Java services used in the Hadoop ecosystem. Hopsworks also

provides a graphical user interface (UI), written in AngularJS,

for authentication, running/debugging data parallel applica-

tions, and managing projects, datasets, and users. Hopsworks

provides perimeter security, being the main point of access

to the Hops Hadoop platform (Kafka may also be exposed

to clients). Command line access to Hadoop services is

Fig. 2: The Hopworks’ UI for a project called ’ID2223’, the datasets of the
project appeared in the middle, and on the left side of the page different
services appeared such as Zepplin, Jobs, and Kafka

turned off by default, and all jobs are run through a Jobs

UI (Spark/Flink/MapReduce), or interactively using Zeppelin

notebooks. Hopsworks provides a REST API to allow external

applications to integrate with the platform.

A. Concepts

In this section, we discuss in more detail the three novel con-

cepts in Hopsworks which are Dataset, Project, and Project-
user.

Dataset1

P1
Alice

P2

Bob

P3 P4

Alex

Alice

Bob

John

Dataset2

P3:Dataset5 Dataset4

Dataset3

P1:Dataset2

Dataset7

Dataset5

P4:Dataset7

Dataset6

Fig. 3: Hopsworks cluster with 4 projects and 4 users. Alice is a Data Owner
in P1 and a Data Scientist in P4, Bob is a Data Owner in P2 and P3, Alex is
a Data Owner in P4, and John is a Data Scientist in P3. P1 shares Dataset2
with P2, P3 shares Dataset5 with P1, and P4 shares Dataset7 with P3.

1) Dataset: A dataset is a directory subtree in the HDFS

(HopsFS) namespace that can be shared between projects.

A dataset has a single owner with read/write privileges and

it is readable by all members of the project (and members

of any other project with which it is shared) through group

permissions. To enable datasets to be shared without breaking

the isolation model for projects, we create a HDFS (HopsFS)

group per dataset. A Dataset has a searchable (metadata) prop-

erty, which, when enabled, means that the dataset as well as its

files and any extended metadata are indexed by Elasticsearch

(also part of Hopsworks). From the Hopsworks UI, users can

free-text search for datasets using the name, the description, or

other extended metadata attribute values. Users with privileges

to access a Dataset (through membership of a suitable project)

can also use free-text search to find files/directories within

the Dataset’s subtree, again using Elasticsearch. A dataset

can also be made public to users outside the Hopsworks

cluster. Public datasets can be discovered and downloaded

229322902526

from any Hopsworks cluster on the public Internet. Downloads

are performed using peer-to-peer middleware.

2) User: Hopsworks supports two levels of users: platform-
users and project-users. A platform-user in Hopsworks is

identified by her email address. Users login using their email

address (authenticating the platform user) using either a JDBC

Realm, LDAP, or two-factor authentication. A platform-user

can be either a normal user or an administrator. Adminis-

trators have additional views for managing user registrations,

project quotas, and monitoring/restarting services and appli-

cations. Administrators do not have privileges to view the

contents of Projects or Datasets from within Hopsworks -

privileged command-line access to the machines and services

is needed for that. A platform-user can be a member of

zero to many projects. For each project, Hopsworks creates

an additional project-user that is stored in the database. The

project-user is linked to the project and platform-user using

foreign keys (when the project or platform-user is deleted, the

corresponding project-users are automatically cleaned up). The

project-user is used to run programs and access data in Hops

Hadoop (not the platform-user). When a user ‘enters’ a project

using the UI, the project-user for that project is activated. Each

project-user is effectively a dynamic role for the platform-user.

From the Hops Hadoop perspective, when a user launches a

job from within a project, the job is owned by the project-

user. Hops Hadoop does not know about platform-users, only

project-users. As such, without explicit authorization a project-

user cannot access data from other projects, as Hops Hadoop

sees two different users - one for each project. Platform-users

cannot use services in Hopsworks, they are only used for

authentication.

3) Project: A project is a collection of datasets and users, as

shown in figure 3, as well as Kafka topics, Jobs (Flink, Spark,

MapReduce), and Zeppelin notebooks. Project-users can have

one of two roles within a project: Data Scientist or Data
Owner. A Data Owner can upload/download data into/from

the project, add/remove members to/from the project, change

roles of other members in the project, create, share, and delete

datasets, import/export datasets, and create/update extended

metadata for files/directories and datasets. On the other hand,

a Data Scientist can only run batch jobs (Spark, Flink, and

MapReduce) or interactive jobs on datasets using Zeppelin.

Each project has its own Resources, Logs, and Notebooks

datasets, stored in HopsFS. The Resources dataset is for Data

Scientists to upload jobs (a limited number of file types) to

the project. The Logs dataset is used by applications to write

out aggregated YARN logs. Data Scientists have sticky bit

read/write privileges on both the Logs and Notebooks datasets.

This ensures that all project-users can read/write logs and

notebooks, but project-users cannot overwrite each other’s logs

or notebooks.

B. Under the hood

Let’s consider some examples to understand how Hopsworks’

concepts are translated into HopsFS actions on the filesystem

tree, see figure 4.

 /
user
tmp
projects

p1

...

myds
Logs
Resources
Notebooks

Fig. 4: The Filesystem tree structure for Projects and Datasets in HopsFS

Alice wants to create a project “p1”, following are the steps

that are happening under the hood in HopsFS:

1) a new group “p1” is created in the database;

2) a new user “p1 alice” is created in the database;

3) the project base directory is created in HopsFS at the

path /projects/p1, where the owner of the directory is

set to “p1 alice” and the group is set to “p1”;

4) the permissions on the project base directory

(/projects/p1) are set so that “p1 alice” and “p1”

group members have read/write/execute permissions.

Now, Alice wants to add Bob as a new member in “p1”.

To add the new member to the project, the following steps are

done in HopsFS:

1) a new user “p1 bob” is created in the database;

2) if the user was assigned the role Data Owner, then the

user “bob p1” is added to the group “p1”.

After creating the project “p1”, Alice now wants to create

a dataset “myds” in “p1”:

1) a new group “p1 myds” is created in the database.

2) all members of the project “p1” are added to the dataset

group “p1 myds” in the database.

3) the base directory for the dataset is created at

/projects/p1/myds. The owner is set to “p1 alice”

and the group is set to “p1 myds”.

4) the permissions on /projects/p1/myds are set so that

the owner “p1 alice” has all permissions, other project

members have read and execute permissions through the

group, while other users have no permissions.

When a new project is created, three default datasets are

created: Logs, Resources, and Notebooks. These datasets have

different permissions requirements to enable all users of the

project to read/write to these datasets while disallowing them

to delete these datasets. That is accomplished by giving

read/write/execute permissions to members of the project

group and add a sticky bit on the dataset folder to disallow

deletion.

hdfs dfs -chmod 1770 /project/p1/Logs

Sharing: A Dataset “myds” can be shared from its home

project “p1” with another project “p2”, then all members of

“p2” are added to the dataset group “p1 myds”. This will

give the members of “p2” the same privileges on “myds”

as all members of the original project. Remember that Logs,

Resources, and Notebooks datasets are not shareable. Note that

sharing a Dataset does not give any permissions whatsoever

229422912527

to any user to write to the parent directory of the Datasets (its

home project’s base directory), hence the isolation of project

is preserved.

III. SERVICES

Hopsworks supports a number of built-in services (dataset

browser, searching, extended metadata designer, and a job

launcher) as well as external microservices provided by other

frameworks (Zeppelin, Dr. Elephant, Kafka). Hopsworks man-

ages access control for all services. Hopsworks has no local

state and its default application server, Glassfish, supports

clustering

A. Extended Metadata

HopsFS provides REST APIs to attach extended meta-

data to Datasets, files, or directories through Hopsworks.

We support two approaches to attach metadata to a

Dataset/file/directory; either Schemaless or SchemaBased. In

the Schemaless approach, the user can attach any JSON

file to her Dataset/file/directory. On the other hand, in the

SchemaBased approach, the user must firstly define a schema

for her metadata, and then, she can attach this schema to her

Dataset/file/directory to be updated later. In order to ease the

schema designing, we provide an intuitive MetadataDesigner

tool in Hopsworks to help users create schemas, import/export

to JSON, and extend existing schemas. The extended metadata

is then exported to Elasticsearch, from where it can be

queried and the associated Dataset/file/directory can be easily

discovered.

B. Search

Hopsworks has a search bar on the top of the page as shown

in figure 2. The search bar has a different scope according to

which view it is accessed from. For example, in the landing

page, the search bar will search for Datasets both within the

cluster and globally. Within the scope of a project (on the

project page), searching will only search through the datasets

belonging to the active project. On a dataset page, it will only

search through the files/directories inside that specific dataset.

C. Job Launcher

Hopsworks allows users to create and run jobs through the

user interface. Currently, it supports MapReduce, Spark, and

Flink jobs. The log files (stderr, stdout) are aggregated from

YARN and are stored in the Logs dataset, from where they

can be viewed. After creating a job, a user could edit, delete,

or schedule the job for running later. Hopsworks integrates Dr.

Elephant in a Job History microservice, to give the user a way

to monitor and tune their jobs.

D. Kafka

Apache Kafka is a distributed publish-subscribe messaging

system that is designed to be fast, scalable, and durable.

Kafka provides an API to allow for authentication and en-

crypted communication between clients and brokers as well

as secure inter-broker communication. Hopsworks eases the

use of Kafka by providing a library called HopsUtil that

encapsulates the security and configuration aspects of Kafka.

Also, Hopsworks provides a user interface to create and

manage Kafka topics within a project.

E. Zeppelin
Hopsworks integrates Apache Zeppelin, a web application

to run notebooks for interactive data analysis. Hopsworks

supports different interpreters for Zeppelin (Spark, Flink,

Tensorflow/Python), which can be started and stopped directly

from the Hopsworks user interface.

IV. DEMO

In the demo, we will first show automated installation for

Hopsworks using the Karamel UI. Then, users will register

through the Hopsworks UI. After logging in, users will be

able to explore different aspects of Hopsworks such as cre-

ating projects and datasets, sharing datasets between projects,

searching for datasets or files or directories, and running jobs.

Also, we will go through some programming examples using

Zeppelin/Tensorflow, Zeppelin/Spark, Kafka, and Flink.
regular IEEE prefers the singular form

ACKNOWLEDGMENT

This work is funded by Swedish Foundation for Strate-

gic Research project E2E-Clouds, and by EU Horizon 2020

project AEGIS “Advanced Big Data Value Chain for Public

Safety and Personal Security” under Grant Agreement no.

732189.

REFERENCES

[1] “Apache Hadoop,” http://hadoop.apache.org/, [Online; accessed 21-February-2017].
[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file

system,” in Mass Storage Systems and Technologies, 2010, May 2010, pp. 1–10.
[3] “Inside Yahoos Super-Sized Deep Learning Cluster,”

https://www.datanami.com/2015/10/12/inside-yahoos-super-sized-deep-learning-
cluster/, [Online; accessed 21-February-2017].

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, ser. OSDI’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 10–10.

[5] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas,
“Apache flink: Stream and batch processing in a single engine,” Data Engineering,
p. 28, 2015.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets,” in Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, ser. HotCloud’10. Berkeley,
CA, USA: USENIX Association, 2010, pp. 10–10.

[7] “Apache HBase,” http://hbase.apache.org/, [Online; accessed 21-February-2017].
[8] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma, R. Murthy,

and H. Liu, “Data warehousing and analytics infrastructure at facebook,” in
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data. ACM, 2010, pp. 1013–1020.

[9] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, and M. Ronström,
“HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases,”
in 15th USENIX Conference on File and Storage Technologies (FAST 17). Santa
Clara, CA: USENIX Association, 2017, pp. 89–104.

[10] M. Seltzer and N. Murphy, “Hierarchical file systems are dead,” in Proceedings of
the 12th Conference on Hot Topics in Operating Systems, ser. HotOS’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 1–1.

[11] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E. Whang,
“Goods: Organizing google’s datasets,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
ACM, 2016, pp. 795–806.

[12] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber,
“Scientific data management in the coming decade,” ACM SIGMOD Record,
vol. 34, no. 4, pp. 34–41, 2005.

[13] “Hopsworks,” https://github.com/hopshadoop/hopsworks, [Online; accessed 21-
February-2017].

[14] M. Bux, J. Brandt, C. Lipka, K. Hakimzadeh, J. Dowling, and U. Leser, “Saasfee:
Scalable scientific workflow execution engine,” in VLDB Demonstrations Track,
forthcoming, Hawaii, USA, September 2015.

229522922528

