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Abstract—Distributed applications deployed in multi-
datacenter environments need to deal with network connections
of varying quality, including high bandwidth and low latency
within a datacenter and, more recently, high bandwidth and
high latency between datacentres. In principle, for a given
network connection, each message should be sent over the
best available network protocol, but existing middlewares do
not provide this functionality. In this paper, we present Kom-
picsMessaging, a messaging middleware that allows for fine-
grained control of the network protocol used on a per-message
basis. Rather than always requiring application developers to
specify the appropriate protocol for each message, we also pro-
vide an online reinforcement learner that optimises the selection
of the network protocol for the current network environment.
In experiments, we show how connection properties, such as
the varying round-trip time, influence the performance of the
application and we show how throughput and latency can be
improved by picking the right protocol at the right time.

Keywords-transport protocols; middleware; machine learn-
ing

I. INTRODUCTION

Recently, distributed systems have undergone a shift from

local deployments at a single site to geo-distributed multi-

datacenter deployments. This trend is caused by the re-

quirement to have data, that is generated globally, locally

available for consumption at low latency (e.g., videos on

YouTube and Netflix, or music on Spotify) or analysis (e.g.,

scientific data in Genomics, Climate Science, or Particle

Physics) in a timely manner. Some of these systems even

try to exploit resources that reside at the logical extremes

of a network, employing a number of approaches loosely

clustered under the term edge computing. These kinds of

environments feature a variety of network conditions ranging

from low latency, high bandwidth intra-rack connections,

over high latency, high bandwidth intercontinental links, to

high latency, low bandwidth peers at the edges, making it

increasingly challenging to design middleware solutions that

perform well for every aspect of such distributed systems.

In addition to these geospatial interconnection considera-

tions, there has also been rapid growth in the production,

storage, and processing of unstructured data, that has led

to the development of high-performance distributed systems

to both manage, transport, and process these huge vol-

umes of data. For example, big data analytics frameworks

like Apache Spark [1], [2] and Apache Flink [3] have

the challenging task of both moving and processing large

quantities of data while providing low latency control over

the executing tasks. The key to performance in such systems

is exploiting the inherent parallelism between control flow

and data flow, as well as within the data flow itself.

Message passing frameworks have shown themselves to

be efficient at exploiting parallelism while avoiding many

of the programming issues that come with synchronisa-

tion. Both Spark and Flink, for example, use Akka [4]

a runtime for reactive applications written for the Java

Virtual Machine (JVM). Another such framework is Kom-

pics, a framework for building stateful, concurrent, message-

passing components [5]. Both Kompics and Akka have long

supported a message-oriented middleware layer to allow for

distributed deployments. In Akka’s case the subsystem is

called akka-remote and its default protocol is the Trans-

mission Control Protocol (TCP), although it also provides

support for the User Datagram Protocol (UDP) and the

Secure Sockets Layer (SSL) using Netty [6] as a networking

library. Similarly, Kompics has moved to Netty. However,

these existing message transport implementations have a

serious limitation: They exhibit unsatisfactory performance

on links with a high bandwidth delay product (BDP) (such

as intercontinental connections), and links with high packet

loss rates (such as wireless links). This limitation is pro-

hibitive for internet scale multi-datacenter deployments, or

for systems that employ peer-to-peer (P2P) methods.

Of course, this issue can be solved at the application layer

using the UDP transport implementations instead. For ex-

ample, Low Extra Delay Background Transport (LEDBAT)

[7] has been implemented on top of Kompics/Netty/UDP

before. However, the implementation of congestion con-

trol protocols at the application level in message-passing

frameworks without priority queues (Kompics, Akka) results

in inconsistent performance due to their timing sensitive

nature. There are alternative, more performant, solutions

already implemented in user-level or kernel-level libraries.

Among those are Aspera FASP [8], the UDP-based Data

Transfer Protocol (UDT) [9], and the Performance-oriented

Congestion Control (PCC) [10]. While FASP is commercial,

and PCC is too recent to have a well tested implementation,

UDT support has been part of Netty since version 4 from

2013. Support for protocols such as UDT at the networking

level opens up new possibilities when building distributed

systems, and, in particular, message-based systems where

fine-grained control over the protocol an individual message
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should use as a network transport is possible.

In this paper we present a messaging middleware layer for

the Kompics component framework, called KompicsMessag-
ing, which uses Netty to provide transport via UDP, TCP and

UDT. The choice of transport protocol is available on a per-

message basis at runtime, providing the maximum flexibility

to adapt to changing network conditions. Additionally, we

present an adaptive algorithm that uses online reinforcement

learning techniques to shift traffic between two peers auto-

matically between TCP and UDT, as these protocols give

very similar guarantees. We introduce message interfaces

that allow for flexible designs, such as addressing of “virtual

nodes“.

We evaluate our messaging middleware on Amazon EC2,

both within and across data centres, to investigate the effects

of round trip time (RTT) on throughput. We demonstrate the

gains in responsiveness and throughput that can be made by

picking the right transport protocol for the right message.

The paper is structured as follows. Section II introduces

the Kompics model and Java framework, as well as the

Netty framework, and reinforcement learning. In section III

we present our solution for the messaging middleware layer

and give concrete examples for working with the provided

APIs and abstractions. We then describe in section IV the

implementation of the adaptive transport selection system.

We evaluate our solutions in section V, and describe related

work in section VI. Finally, we summarise the paper and

give suggestions for future work in section VII.

II. BACKGROUND

A. The Kompics Component Model

Since many of the design decisions for KompicsMessag-

ing are directly related to the way the Kompics component

model [5] itself works, we will give a short introduction

here. More details can be found in [11].

Semantics. Kompics is a programming model for distributed

systems that implements protocols as event-driven compo-
nents connected by channels. Kompics provides a form of

type system for events, where every component declares

its required and provided ports – they can be thought of

as “services” –, which in turn define which event-types

travel along the channels that connect them and in which

direction. On a port type, the “service specification” for a

port, events are declared as either indications or requests.

Within a component that provides a port P with indication

event I and request event R, only instances of I can be

triggered (“sent”) and only instances of R (or their subtypes)

can be handled (see below). Conversely, within a component

that requires P only instances of R can be triggered and only

instances of I (or their subtypes) can be handled.

The channels connecting ports provide first-in-first-out

(FIFO) order exactly-once (per receiver) delivery and events

are queued up at the receiving ports until the component is

scheduled to execute them.

Scheduling. A component is guaranteed to be only scheduled

on one thread at a time and thus has exclusive access to its

internal state without the need for further synchronisation.

Different components, however, are scheduled in parallel

in order to exploit the parallelism expressed in a message-

passing program. When a component is scheduled, it handles

one event at a time, and keeps handling events until either

there are no more events queued at its ports or a configurable

maximum number of events to be handled is reached. After

the component has finished handling events, it will be placed

at the end of the FIFO queue of components waiting to

be scheduled. Tuning the configurable maximum number

of events to be handled enables developers to tradeoff

increased throughput, where higher values maximise cache

reuse through fewer component context switches, against

fairness, that is avoiding starvation of components with

fewer queued events.

Event-handling. In contrast to Actor systems like Akka [4]

or Erlang [12], events in Kompics are not addressed to

components in any way, but are instead published on all

connected channels. In this way the same event can be

received by many components. The components themselves

decide which events to handle and which to ignore by

subscribing event handlers on their declared ports. Note that

ignored messages are silently dropped, which is necessitated

by the channel broadcasting model, that is to say, as opposed

to Erlang and Akka, in Kompics it is often completely

correct to simply ignore a large number of events.

Matching of events to handlers is based on the events’ type-

hierarchy, although there are some Kompics extensions that

provide pattern matching as well.

Note that in addition to the default Java library implemen-

tation of Kompics, there are alternatives written in Scala and

Python as well, which are not considered in this paper.

B. Netty

Netty [6] is a non-blocking I/O (NIO) network application

framework for the JVM. It supports the rapid development of

maintainable high-performance and high-scalability protocol

servers and clients. Additionally, Netty provides a native

byte buffer library that minimises unnecessary copying of

data. Netty is a perfect match for Kompics, because it

is event-driven and asynchronous, making the interface

between the two systems both seamless and efficient. In

order to provide non-blocking operations Netty has a highly

customisable concurrency model employing constructs such

as thread pools and futures, as well as a configurable channel

handler pipeline.

Netty is well tested and already used in a number of large

projects such as Apache Spark [1], [2] and Apache Flink [3],

as well as Akka [4] and at companies like Facebook, Google

and Spotify.1

1Source http://netty.io/wiki/adopters.html.
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C. Reinforcement Learning

Reinforcement learning is an approximate dynamic pro-

gramming approach from machine learning, where an agent

executes actions based on its own state and the state of

its environment so as to maximise some kind of numerical

reward [13]. It is an unsupervised learning algorithm. Instead

of being told which actions to take, agents explore their

environment to take (initially random) actions, and over

time they learn a policy that tells them which action is

expected to give the best reward given its current state and

the state of its environment. Especially in the context of

control systems, there is a focus on online learning while

maximising reward, by employing ‘good’ strategies. This

is referred to as exploitation, and an often difficult balance

must be maintained between exploring new actions to take

and exploiting the learnt policy to maximise reward.

A reinforcement learning problem consists of the following

elements:

1) A policy π prescribes the agent’s behaviour in form of

a strategy by mapping perceived states to actions that

are to be taken while in that state. It is the policy’s task

to balance exploration and exploitation as appropriate.

A policy that always exploits is called greedy, while a

policy that always explores would simply be random.

A common policy used to balance the two extremes

is called ε-greedy, which explores with probability ε
and otherwise always exploits. Similar to the approach

of simulated annealing, it is reasonable to start with a

relatively high ε, and then gradually reduce it to a certain

minimum value, in order to eventually let the learner

converge to the desired degree.

2) The reward function describes the learning objective and

maps states (or state-actions pairs) to numerical rewards,

which the agent is trying to maximise. The true reward

function is typically unknown (and possibly unknowable,

if it can change over time), and each reward R must be

observed by exploration.

3) A value function V describes the desirability of a certain

state, based on its expected long term reward. While

the reward function is given by the environment, the

value function must be learned and possibly adapted to

changing environments by the agent. The value function

is also dependent on the policy, and thus often written

V π for a policy π.

4) Additionally, an agent might have a model of the envi-

ronment which predicts states that result from actions,

and can be used for planning. Without a model, a state-

value function V is often not useful, as the next state

resulting from an action can not be known in advance.

In such circumstances it is necessary to learn an action-

value function Q instead, or as before Qπ for a specific

policy.

One of the most important reinforcement learning methods is

1 p u b l i c c l a s s Network ex tends PortType {{
2 request(Msg. c l a s s);
3 request(MessageNotify.Req. c l a s s);
4 indication(Msg. c l a s s);
5 indication(MessageNotify.Resp. c l a s s);
6 }}

Listing 1. Kompics Network Port.

1 p u b l i c i n t e r f a c e Msg<H ex tends Header> ex tends
KompicsEvent {

2 p u b l i c H getHeader();
3 }

Listing 2. The Msg interface.

known as temporal difference(TD) learning, and specifically

TD(λ) [13], which uses the notion of temporal distance to

discount the influence of reward samples in learning a value

function.

III. MESSAGING IN KOMPICS

A. API

The core of the KompicsMessaging API is a Kompics

component called NettyNetwork which provides Kompics’

network port, shown in listing 1 and interfaces the Kompics

runtime with Netty’s execution model. The network port

allows messages that implement the Msg interface (listing

2) to travel on both directions on network channels and it

allows to request notification of a message’s delivery status

with a MessageNotify.Req, which will be answered with a

MessageNotify.Resp that indicates whether the message was

sent successfully. If no notification is requested messages

are simply “fire and forget”.

As can be seen in listings 2 and 3 both Msg and Header

allow subtypes of their generic parameters and neither those

nor Address (listing 4) provide any implementation. In fact,

there are default implementations for all of these interfaces

in the NettyNetwork package, but the interfaces specify the

minimum features the actual network implementation re-

quires to work. The idea behind this design is, to allow

1 p u b l i c i n t e r f a c e Header<Adr ex tends Address> {
2 p u b l i c Adr getSource();
3 p u b l i c Adr getDestination();
4 p u b l i c Transport getProtocol();
5 }

Listing 3. The Header interface.

1 p u b l i c i n t e r f a c e Address {
2 p u b l i c InetAddress getIp();
3 p u b l i c i n t getPort();
4 p u b l i c InetSocketAddress asSocket();
5 p u b l i c boolean sameHostAs(Address other);
6 }

Listing 4. The Address interface.
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1 p u b l i c c l a s s RoutingHeader<Adr ex tends Address>
implements Header<Adr> {

2 p r i v a t e f i n a l BasicHeader<Adr> base;
3 //Forwardable Trait
4 p r i v a t e Route<Adr> route = n u l l;
5 @Override
6 p u b l i c Adr getSource() {
7 i f (route != n u l l) {
8 re turn route.getSource();
9 }

10 re turn base.getSource();
11 }
12 @Override
13 p u b l i c Adr getDestination() {
14 i f (route != n u l l && route.hasNext()) {
15 re turn route.getDestination();
16 }
17 re turn base.getDestination();
18 }
19 ...
20 }

Listing 5. A multi-hop routing Header.

application designers to pick implementations that suit their

requirements without having to extend existing classes and

rely on runtime type-casts. For example, if someone wanted

to implement messages that can be forwarded through

multiple intermediary hosts, but finally replied to directly,

they might add an origin or replyTo field to the their

Header implementation. Or an Address implementations might

provide an addtional id field which disambiguates hosts with

multiple network interfaces in use.

When a NettyNetwork component is initiated, it is provided

with the protocols and ports to listen on. Supported protocols

at this point are UDP, TCP, and UDT. A single instance of

the component only allows one port to listen on per protocol,

but if more are required another instance with a different

configuration can simply be started. Every instance manages

its own Netty handlers and channels.

B. Semantics

It is important to note that the semantics of network

messages differ from those of Kompics channels. While

Kompics channels provide FIFO order with exactly-once

delivery, network messages provide only at-most-once se-

mantics. Even over TCP and UDT a sudden channel drop

may lead to the loss of messages, and replicating message

acknowledgements on the middleware layer adds unneces-

sary complexity and is, in general, not desirable. If message

delivery is a concern for an application, it may implement

resending and acknowledgements itself. Additionally, while

TCP and UDT maintain Kompics’ FIFO semantics, they are

not guaranteed when using UDP. Adding these semantics

would defeat the point of having a lightweight protocol like

UDP available in the first place.

The stark difference in semantics is balanced by the fact that

KompicsMessaging does not provide location transparency

and it is always clear to the developer whether or not

messages might go over the network.

However, messages that might go over the network do

not always actually get serialised and sent over a link.

Sometimes it is desirable to use “addressable” components

in a way similar to Akka’s actors. We provide support for

this with a package for virtual networks, where, in addition

to the network interface’s IP address and port, an identifier

is assigned to certain subtrees of the Kompics component

hierarchy. Those subtrees are referred to as virtual nodes

or vnodes. While communication across vnodes happens

almost exclusively via the network port, the messages

they send to each other within a single host are actually

never serialised and deserialised. Instead the NettyNetwork

component detects such occurences using the sameHostAs

method specified in the Address interface (cf. listing 4) and

“reflects” the messages back up through the network port. In

this scenario a special VirtualNetworkChannel implementation

takes care that messages are only delivered to the destination

vnode.

As a result of this behaviour a programmer should never

expect to receive copies of network messages, and instead

stick to the default Kompics philosophy of immutable mes-
sages/events.

C. Transport Protocol Selection

While the Header interface does not require every imple-

mentation to have a setter for the Transport field, imple-

mentations are free to provide one. This leaves the system

designer with the decision whether or not the transport

protocol should be hardcoded for a specific message type, or

injected by a configuration at creation time, or even replaced

on the fly by an interceptor component between the mes-

sage sending components and the NettyNetwork component.

Such an adaptive transport system could measure network

variables or have access to some deployment descriptor and

would then decide the best protocol to use for a specific

message type at runtime. See section IV for details on our

implementation of such a system.

Regardless of how the protocol selection for a message is

made, the NettyNetwork component ensures that the required

channels, if any, are available. If necessary, new channels are

created and messages delayed until the requested channels

are available. When channels are no longer in use, they

might eventually be dropped to reclaim resources. However,

our implementation is very conservative with this, since

channel establishment might be expensive, as is, for exam-

ple, the case with hole punching to circumvent NATs. Thus

generally channels will be kept open as long as possible.

IV. ADAPTIVE TRANSPORT SELECTION

Since it can be very difficult or even impossible to

statically select the network transport protocol to be used

for transferring data, we have implemented an interceptor

component that tries to learn the best ratio between TCP

and UDT dynamically.
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Figure 1. Distribution of observed selection ratios (100% TCP ∼ −1.0,
100% UDT ∼ 1.0) of the probabilistic (Random) and the Pattern selector
compared to the Target ratio. Episodes contain around 1600 messages and
there are 16 messages on the Wire concurrently. Every dataset has around
160000 entries. It is very clear that the probabilistic selection policy can be
quite far off target even for full episodes, which would impede the learner
significantly.

These two protocols were chosen for their practically identi-

cal properties, but very different behavioural characteristics.

The ideas presented in this section could, of course, be

extended to other protocols with little difficulty.

A. Integration & Structure

The data-network-interceptor component introduces a

pseudo-protocol Transport.DATA, which it replaces from im-

plementations of a specific DataHeader transparently at run-

time with either Transport.TCP or Transport.UDT. The com-

ponent is placed between the NettyNetwork component and

any consumer, using ChannelSelectors to route non-data

messages past it, directly to the network component. The

DataNetwork component is provided to wrap the interceptor

and the network component, in order to simplify setup.

Internally this data interceptor component controls the flow

of a data stream to a specific destination node by queuing

outgoing messages, and then releasing them to the network

layer at an adaptive rate, inserting the transport protocol

chosen by the current protocol selection policy (PSP). A PSP

selects the transport protocol for a specific message based on

internal state and the target protocol ratio r, as prescribed

by a protocol ratio policy (PRP). Both PSP and PRP can

be configured at system start, and custom policies can be

provided by implementing the ProtocolSelectionPolicy and

ProtocolRatioPolicy interfaces respectively. We investigated

and provide a number of policies as described in the next

section.

B. Protocol Selection Policies

The goal of a protocol selection policy is to assign a

transport protocol to an individual message, before it gets

passed off to the networking component. The policies we are

interested in try to achieve a certain target ratio r between

messages sent via TCP and those sent via UDT. A “good”

policy in our use case is one that does not stray far from the

target ratio even if we consider only relatively short message
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Figure 2. Impact of the protocol selection policy on throughput and
true protocol ratio (100% TCP ∼ −1.0, 100% UDT ∼ 1.0). Probabilistic
ratio selection is less accurate (smoother) than pattern selection, leading to
slightly slower convergence in the throughput.

sequences out of the total stream emitted.

We consider r in different representations in the following

sections, which are convenient for different circumstances.

The most convenient form for analysis and visualisation of

data, is the form r ∈ [−1,1] ⊂ R where −1 indicates 100%
TCP, 0 indicates a 50-50 mix between TCP and UDT, and

1 indicates 100% UDT. For talking about probabilities it

is convenient to express r ∈ [0,1] ⊂ R where r is the

probability of picking UDT, and thus 0 indicates 100% TCP,
1
2

indicates a 50-50 mix between TCP and UDT, and 1
indicates 100% UDT. Lastly when talking about patterns

it is easiest to simply state how many TCP packets should

be emitted for every UDT packet or vice versa. In this form

r ∈ [0,1] ⊂ Q such that r = p
q

indicates p P s for every q
Qs and the mapping between TCP, UDT and P ,Q is defined

by the sign of the r ∈ [−1,1] ⊂ R representation. We will

use these forms mostly interchangeably as they are typically

clear from context and can easily be converted into each

other.

1) Probabilistic Selection: This baseline algorithm, im-

plemented by RandomSelection, uses a random variable with

Bernoulli distribution to select the protocol, such that the

protocol ratio r is the probability of choosing UDT instead of

TCP. While the law of large numbers dictates that eventually

the ratio between the protocols will approach r, there is no

notion of short-term protocol balance in this selection policy,

leading to concerns over the distortion of rewards for the

PRP learner, as there could be significant skew within one

update interval.

2) Issues with Probabilistic Selection: In order to investi-

gate the severity of the skew issue in probabilistic selection,

consider the following experiment: On a 100MB/s link with
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10ms delay we send messages of 65kB each. One learning

episode (s. section IV-C2) is 1s long. That means during one

episode approximately 1600 messages are sent, and there

should be 16 messages concurrently on the wire at any time.

If we run the probabilistic selector with these values over a

few different target ratios, we can see in figure 1 that while

the mean (black horizontal line in a box) is always fairly

close to the target value, the max/min can incur around 0.1

skew even for a full episode of 1600 messages. For short

sequences of 16 messages, the max/min show a 0.5 skew

with rather larger 75th percentile boxes. That means that for

50-50 almost any combination of protocols can be on the

wire concurrently.

As figure 2 indicates, this behaviour leads to somewhat

slower convergence of the learner in practice, but, in the

worst case with very small ε (s. section IV-C2), it could

prevent convergence altogether, as the learner would literally

be learning the wrong values sometimes, and might not be

able to recover from it before there is too little exploration to

ever revisit those values. However, at least in figure 2 both

implementations eventually achieve the same performance,

so the probabilistic policy is not completely infeasible in

practice. It can also be noted that the probabilistic learner

displays a much smoother, but less accurate, behaviour in

the true protocol ratio, that is the ratio that is measured on

the receiver side, not the one prescribed by the PRP instance.
3) Pattern Selection: Instead of a random variable, this

policy employs heuristics to find an interleaving pattern

between UDT and TCP messages, such that a) at any point

within the pattern the deviation from the target ratio r (s.

above), which must be a rational number, is relatively small,

and b) a complete run of a pattern has no deviation from r.

The first target results in consecutive runs of either protocol

being as short as possible, such that the protocols ‘alternate’

rapidly. For example, if r = 1
2

and we use u to specify that

UDT is selected and p to specify that TCP is selected, then(up)∗ and (pu)∗ (using regular expression notation), would

be optimal patterns. For r = 1
3

the patterns (pup)∗, (ppu)∗,

and (upp)∗ would all be equivalent in long runs (ignoring

imbalance caused by partial execution at the beginning or

the end of a finite string).
4) Patterns: To formalise and generalise the above in-

tuition behind pattern selection somewhat, consider values

such that r = p
q
∈ Q with p ≤ q ∈ N. Instead of emitting p

and u, for consistency, we now want to emit p P s for every

q Qs. Similar to the kleene star notation above (e.g. P ∗),

we write P p to denote p consecutive P s in a pattern. We

have found two general patterns that perform well for our

case:

p In the p-pattern, the idea is to split the Qs into a

number of blocks of length b = ⌊ q
p
⌋ and interleave

the blocks with a P in an alternating manner.

Since this does not always work out perfectly,

there is some rest c = q−pb of Qs that are simply

1: Initialize Q(s, a) arbitrarily and es,a = 0, for all s, a
2: loop(for each episode):

3: Initialize s, a

4: repeat(for each step of episode):

5: Take action a, observe r, s′

6: a′ ← πQ(s′)
7: δ ← r + γQ(s′, a′) −Q(s, a)
8: es,a ← 1
9: for all actions â ≠ a do

10: es,â ← 0
11: end for
12: for all s, a do
13: Q(s, a) ← Q(s, a) + αδes,a
14: es,a ← γλes,a
15: end for
16: s← s′; a← a′

17: until s is terminal

18: end loop

Figure 3. Sarsa(λ) algorithm adapted from Sutton and Barto [13] (figure
7.11).

appended at the end of the pattern. The resulting

pattern has the form (QbP )pQc.

p + 1 Mostly similar to the p-pattern, the p + 1-pattern

uses one additional block of Qs between the last

P and the Q-tail. For certain r this can lead to

lower average skew. For the p+1-pattern the block

length is b⌊ q
p+1

⌋, leading to a rest of c = q−(p+1)b,
and the actual pattern has the form (QbP )pQbQc.

In general it is best to select the pattern with the smallest

value for the rest c. Of course, one could always do better

by spreading the c tail Qs more evenly over the sequence.

However, more complicated patterns are more difficult to

keep track of computationally. A possible solution might be

to generate appropriate deterministic finite automaton (DFA)

transition matrices on the fly, that represent a well spread

pattern. But if values of r change rapidly, the effort might

be wasted.

It can be seen in figure 1 that pattern selection improves

significantly on the distribution of actual ratios compared

to probabilistic selection, especially for the long episodes.

For shorter sequences like the 16 messages on wire, there is

still a large improvement, but there are also areas where it

fails to cope well. For example at r = 3
100

the pattern mainly

consists of a long sequences Qs with the occasional P . Since

the Q sequences are longer than the 16 messages on the wire,

there is some significant skew there, that can not really be

avoided. This also shows that it might not be worth setting

the learner (s. section IV-C2) to a very fine resolution in

terms of r as it might be impossible to accurately represent

those ratios at meaningful timescales.

175017471458



�� �� �� �� ��� ���
��	
 (�)

�����

������

������

������

������
���������� (��/�)

����

���

���

�� �� �� �� ��� ���
�	
� (�)

-�
�

-�
�

�
�

�
�

���	�

����

���

���

Figure 4. TD learner run with default matrix Q(s, a) implementation,
showing throughput and true protocol ratio (100% TCP ∼ −1.0, 100%
UDT ∼ 1.0) with TCP and UDT as reference. For large state-action spaces
the model converges too slowly to be useful.

C. Protocol Ratio Policies

1) Static: The simplest possible policy, setting the target

ratio, e.g., TCP-only (r = 0), UDT-only (r = 1) or 50-50

(r = 1
2

), per configuration at system startup. This policy is

mostly convenient for testing the PSPs and as reference for

our experiments, and is implemented in StaticRatio.

2) Temporal Difference Learner: Implemented in

TDRatioLearner, this TD(λ) reinforcement learning (cf.

section II-C) based policy uses collected throughput and

latency statistics as rewards to adjust the target ratio r ∈ Q.

We use an online on-policy Sarsa(λ) [13] control algorithm,

depicted in figure 3, which learns an action-value function

Q(s, a) (for states s and actions a), and uses it to adapt

an ε-greedy policy πQ at every time step (or episode).

The matrix e is called an eligibility trace, and describes to

what degree previously visited states should benefit from

the reward in the current time step. We use the so called

replacing trace instead of the default accumulating trace, to

avoid heavily visited state-action pairs to have unreasonably

high eligibility, and thus receive an disproportional amount

of reward. There is a number of parameters which have

important impact on the behaviour of the algorithm:

● λ ∈ [0.0,1.0] ⊂ R describes the decay of eligibility,

where λ = 0.0 leads to complete exclusion of the

eligibility trace (cf. one-step TD in [13]), and λ = 1.0
declares unbounded eligibility, and is equivalent to a

Monte Carlo method.

● γ ∈ [0.0,1.0] ⊂ R defines how far in the direction of the

estimated value of the chosen state-action Q(s′, a′) we
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Figure 5. TD learner run with Q(s, a) collapsed into a V (s) and a model
M(s, a) → s′ implementation, showing throughput and true protocol ratio
(100% TCP ∼ −1.0, 100% UDT ∼ 1.0) with TCP and UDT as reference.
Using a model reduces the space that must be explored and improves
convergence significantly.

want to shift eligible state-action entries in the estimator

Q. When γ = 0.0 the expected value is ignored and only

the current reward r and the previous estimate Q(s, a)
are taken into account. If γ = 1.0 the expected value

has the same weight as the previous value.

● α ∈ R is the step size for value estimate adjustments. If

α is large, it can change estimates quickly, and possibly

also balance out small eligibility (for example for α >
1.0). If α is small, the learning progress can be very

slow.

3) Matrix-based Value Functions for TD(λ): The default

implementation without any model for Q(s, a) in the dis-

crete case is simply a large matrix with all state-action pairs.

However, even for relatively small numbers of states and

actions, it can take a very long time to fill out all the fields

of the matrix so the policy πQ can make greedy decisions at

all (it makes a random decision if the value is uninitialised).

This might lead to very long convergence times, or might

prevent convergence altogether if ε decays too rapidly (cf.

section II-C).

To make this clear, consider an example where we discretise

the ratio space for r by defining a fixed step size κ = 1
5

.

This is in fact what happens in our implementation as

well, in order to interact well with the pattern-based PSP.

To make things easier to see, we also shift the range

of r from [0.0,1.0] ⊂ R to [−1.0,1.0] ⊂ Q such that−1 ∼ 100% TCP, 1 ∼ 100% UDT, and 0 ∼ 50-50. With

this setup we allow 2 1
κ
+1 states such that our state space is
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Figure 6. TD learner run with Q(s, a) collapsed into a V (s), which
is approximated by a quadratic function, and a model M(s, a) → s′

implementation, showing throughput and true protocol ratio (100% TCP
∼ −1.0, 100% UDT ∼ 1.0) with TCP and UDT as reference. Using
the approximated values where no actual data is available, increases
performance further, and avoid unnecessary backtracking by the policy.

s ∈ {−1,−4
5
, . . . ,0, . . . , 4

5
,1}. To make things interesting we

allow not only the basic actions of taking one step or no step

in either direction, but we allow two steps at once as well,

giving an action space of a ∈ {−2
5
,−1

5
,0, 1

5
, 2
5
}. Putting these

spaces together gives an 11 × 5 matrix for Q(s, a) with 55
different states. In figure 4 we can see how this implemen-

tation performs with TCP and UDT as reference, using pa-

rameters α = 0.5, γ = 0.5, λ = 0.85, εmax = 0.8, εmin = 0.1,

and ε-decay of Δε = 0.01 per time step. Since TCP is very

fast in this environment, the optimal behaviour would be to

converge to r very close to −1. However, it can clearly be

seen that this never happens in the example run, as, despite

the very large initial εmax value and relatively slow decay

Δε, after 120s the value space of Q(s, a) is absolutely

insufficiently explored, and with only a 10% chance for

further exploration (εmin) convergence is very unlikely at

this point. While it is theoretically possible to get this model

to converge with larger values of εmax = 0.8 and lower

decay Δε, waiting many minutes for the transfer to perform

reasonably is simply not realistic, since many transfers might

have finished by the time the algorithm converges.

4) Model-based Value Functions for TD(λ): To speed

things up, we can use our domain knowledge about the

problem and define a model M(s, a), which maps a state s
and an action a to the next state s′ which would result from

application of a to s. For most s, a this would simply be

M(s, a) = s + a, however since we have a finite state space

we have to remap the edges, such that we never leave it.

Figure 7. Amazon AWS deployment and connectivity of the experimental
setup.

Thus, for example, M(−1,−1
5
) = −1, and so on. Formally,

for a state space S the model function M is defined as:

M(s, a) = { min(s + a,max(S)), for s + a ≥ 0
max(s + a,min(S)), for s + a < 0

With this approach we can collapse the 11×5 matrix we used

for Q(s, a) into a state-value vector V (s) with 11 states,

and use M to calculate Q(s, a) = V (M(s, a)). Using this

approach, we can run the same experiment as before, and,

as can be seen in figure 5, it now converges to a reasonable

value after around 20s. We even used a lower initial value of

εmax = 0.3, to avoid too much exploration after convergence.

5) Value Function Approximation for TD(λ): While 20s
is significantly better than no convergence, on high band-

width connections, e.g., 250MB/s, one could already have

to transferred 5GB with the ‘right’ protocol provided by an

oracle, before full performance is reached by the learner. In

order to reduce convergence time further, we can make the

following assumption about the reward function:

At any given time the reward function for a given connec-
tion’s protocol selection ratio has the shape of a quadratic

function with a single maximum.
Given this assumption, we can approximate the value esti-

mator V using function approximation over the values we

have seen, with a minimum of two, to extrapolate values in

unexplored areas. In a sense, we are trying to exploit a trend
we see in the data we have already collected. Note that we

never use an approximated value if there is a learned value

available. We simply fill the gaps earlier on, so we can make

greedy decisions before the state space is properly explored.

Using this approach, we can see in figure 6 that the learner

already performs reasonably well after a few seconds, but

more importantly it never backtracks significantly leading to

much more consistent behaviour especially in the late states

at low ε values.

V. EVALUATION

In order to support our claims about the need for flexible

transport protocols we executed a number of experiments
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Figure 8. RTTs for simple “Ping” control messages over different distances
and with and without parallel data transfer using different protocols.

using our KompicsMessaging implementation2. Specifically

we wanted to answer two questions:

i) How does the link delay influence the choice of protocol

for data transport.

ii) How does the choice of protocol influence the trade-off

between throughput for data messages and latency for

control messages.

A. Experiment Setup

On top of our KompicsMessaging implementation we

developed a number of components for two purposes:

1) One set of components deals with transporting a large

file from a sender to a receiver. Our implementation

uses wrappers around java.io.RandomAccessFile to split

the file into messages that would fit into our Netty

channel serialisation buffers – we used 65kB buffer

size in the experiments. We took great care in this to

avoid duplicating data in memory or reading up any

unnecessary data, as well as keeping the whole process as

asynchronous as possible. Of course, writing into the file

has to be synchronised. As a dataset to transfer we used a

NetCDF [14] climate data file, which is around 395MB in

size. A 395MB dataset provided us with a good tradeoff

between getting the protocols ramped up even on fast

links, while allowing us to run multiple iterations of the

experiments even on the slowest links. It should be noted

that, since our implementation has a Snappy compression

handler in Netty’s channel pipelines by default, the exact

results might differ if the experiments are repeated with

data than can easily be compressed.

2) The other set of components simulates timing sensitive

control messages by sending “pings” from one host the

other, with the other host replying with a “pong” and the

sender measuring the round trip time (RTT).

For the experiments we also used a slightly modified Netty

version 5.0.0Alpha3-SNAPSHOT, where we increased the

default values for UDTs protocol buffer sizes, both send and

receive buffers, from 12MB to 100MB. This was necessary

2Code and Data can be found here: https://github.com/CaracalDB/
ICDCS17
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Figure 9. Data transfer throughput for different RTTs, over TCP, UDT,
DATA (error bars show 95% confidence intervals). It can be seen that DATA
behaves close to optimal at all RTTs.

as we discovered that on high BDP links the normal default

values resulted in high packet loss rates on the receiver side.

The overall scenario was then set up in such a way that we

could pick the protocol for the data and the control messages

separately and we could also decide whether to run only data

transfer, only control messages or both at the same time.

As a testbed we used Amazon EC2 with pairs of c3.2xlarge

instances, running Ubuntu 14.04 LTS AMIs with HVM

virtualisation, in four different setups: The first setup (at

0ms RTT) copied on the same node from one SSD to the

other using loopback interface, the second setup (EU-VPC)

would have both instances within the same data centre,

i.e. in Ireland, and even within the same Virtual Private

Cloud (VPC). The third setup (EU2US) used one instance

in Ireland and the other one in North California in the USA.

The third setup (EU2AU) still had one instance in Ireland

but the second instance was now in Sydney, Australia. These

setups allowed us to test our system with RTTs between

around 3ms and around 350ms, as shown by the “TCP

Pings Only” entries in figure 8. The first, local, setup simply

measures disk throughput in the best case, or protocol or

implementation buffer upper bounds in the worst case.

B. Throughput and Link Delay

We measured the throughput of our implementation by

repeatedly sending the transfer dataset from the first instance

to the second and measuring the disk-to-disk transfer time.

For TCP, UDT, DATA (cf. section IV) transport we would do

at least 10 runs, sometimes more until the relative standard

error (RSE) dropped below 10% of the sample mean. The

results are shown in figure 9 with the different setups

represented by different RTTs. Local loopback is at 0ms,

EU-VPC would be at 3ms, EU2US would be around 155ms
and EU2AU would be around 320ms. The error bars, where

visible3, show the 95% confidence interval for the sample

mean.

3For most data points, the errors are simply very small, as many of these
tests have very consistent results.
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It becomes immediately clear that transfer via TCP behaves

as we had expected, with very good performance at low RTT

but a sharp drop-off at higher values. In the local scenario,

in fact, TCP and DATA are limited by disk performance, as

memory to memory we reached even higher throughput of

around 150MB/s. UDT seems to be limited by internal queue

and buffer sizes. It can be noted that UDT shows consistent

behaviour across all setups with real network. The reason

is that Amazon artificially rate limits UDP traffic to around

10MB/s. While TCP vastly outperforms UDT within a VPC,

at longer RTTs UDT is up to an order of magnitude faster.

Our learner implementation shows the desired behaviour of

following TCP closely, where TCP is strong and matching

UDT, where it is strong, giving the best of both worlds, with

the only drawbacks being somewhat higher variance and a

certain ramp up time.

C. Message Latency

During this experiment series we ran both the data transfer

and the control message components in parallel. We used the

same statistics as in the transfer-only experiment series to

determine the number of runs.

We tried four different protocol combinations: i) Both

control messages and data message were sent over TCP,

ii) control messages were sent over TCP and data messages

were sent over UDT, and iii) control messages were sent

over TCP and data messages were sent over DATA. In figure

8, which also includes results without parallel data transfer

for comparison, we can see the influence of data transfer

on control message latency. As expected the setup sending

both message types over the same protocol (TCP) incurs

a significant latency penalty – note the logarithmic scale.

However, when sending data messages over UDT instead,

the latency increase is barely noticeable, as the two protocols

do not interfere as much. In the case where data messages

use the DATA protocol, which is a mix of TCP and UDT,

the result is in between the extremes. However, the RTT

is still two orders of magnitude lower than sending both

message type over TCP. The reason for the significantly

better behaviour, are in the data transfer optimised internal

queuing, the DATA protocol provides, which allows control

messages to interleave better with data messages.

VI. RELATED WORK

Protocols. The performance of different transport protocols

has been well studied, especially relating to TCP [15], [16],

and many alternative congestion control algorithms and pro-

tocols have been proposed. Among them are solutions that

address high BDP links [17], [18], specifically satellite links

[19], [20], data centre networks [21], [22], lossy links such

as wireless connections [23], [24] and adaptive approaches

[25]. However, changing TCP’s congestion control algo-

rithm typically requires modifcations to the operating system

kernel and such access can not reasonably be expected in

systems like internet-scale P2P deployments. There is also

a number of alternative protocols with similar guarantees to

TCP like Aspera FASP [8], the UDT [9], PCC [10], and

LEDBAT [7]. And lastly it has been attempted to inverse

multiplex data over multiple parallel TCP connections [26]

or even multiple networks paths [27]–[29].

Middleware. There is a number of message-oriented mid-

dleware systems including Akka’s remote [4], Websphere

MQ [30], SIENA [31], and ZeroMQ [32]. Of those Akka

is most similar to our work since it combines a message-

passing progamming framework with a network messaging

layer. However, while Akka does provide support for plug-

ging in custom transport implementations, Actors within an

ActorSystem are fairly inflexible when it comes to the choice

of transport used for their messages. The cause of this is that

Akka provides location transparency for its Actors, never

exposing the circumstance that messages in fact may travel

to another host. In our system on the other hand networking

is always explicit to avoid unexpected behaviour caused by

different channel semantics.

Even modern Actor-based programming models designed

with specific support for multi-cloud environments, such

as Microsoft Orleans [33], have not addressed the issue of

mixed congestion control protocols, to our knowledge.

Automatic Protocol Selection. Wachs et al. [34] have in-

vestigated heuristic, linear programming, and reinforcement

learning based solutions for selecting networking protocols

automatically, with a focus on decentralised, peer-to-peer

networks.

VII. CONCLUSIONS

In this paper we have presented a message-oriented

middleware called KompicsMessaging, that provides per-

message transport protocol selection, with the choice among

UDP, TCP, and UDT and a meta-protocols called DATA, as

well as a highly customisable API allowing for, e.g., virtual

node architectures, or multi-hop forwarding systems to be

built on top with minimal overhead. Additionally, we have

presented an adaptive transport protocol selection mecha-

nism employing online reinforcement learning techniques.

Our experiments clearly demonstrated the need for flexible

and dynamic transport protocol selection for systems with

broad application areas, and showed that our solution meets

those requirements. The evaluation also showed that it is

strictly desirable to separate the channels and protocols

used for small, latency-sensitive control messages and large

data messages which typically value high throughput over

low latency, and that our DATA meta-protocol eases this

separation with good results.
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