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Abstract—With the increasing popularity of serving and
storing data in multiple data centers, we investigate the efficiency
of majority quorum-based data consistency algorithms under this
scenario. Because of the failure-prone nature of distributed stor-
age systems, majority quorum-based data consistency algorithms
become one of the most widely adopted approaches. In this paper,
we propose the MeteorShower framework, which provides fault-
tolerant read/write key-value storage service across multiple data
centers with sequential consistency guarantees. A major feature
is that most read operations are executed locally within a single
data center. This results in lowering read latency from hundreds
of milliseconds to tens of milliseconds. The data consistency
algorithm in MeteorShower augments majority quorum-based
algorithms. Thus, it keeps all the desirable properties of majority
quorums, such as fault tolerance, balanced load, etc.

An implementation of MeteorShower on top of Cassandra
is deployed and evaluated in multiple data centers using the
Google Cloud Platform. Evaluations of MeteorShower framework
have shown that it can consistently serve read requests without
paying the communication delays among replicas maintained in
multiple data centers. As a result, we are able to improve the
latency of read requests from hundreds of milliseconds to tens of
milliseconds while achieving the same latency on write requests
and the same fault tolerance guarantee. Thus, MeteorShower is
optimized for read intensive workloads.

Keywords—Geo-distributed storage systems; Majority quorum;
Data consistency; Synchronized clocks; Distributed time

I. INTRODUCTION

With the growing popularity of Internet-based services,
more powerful backend storage systems are needed to match
ever increasing workloads in terms of concurrency, intensity,
and locality. Under this context, distributed storage systems
with global data replication are proposed. On the one hand, the
flexibility to increase or decrease the number of data replicas
and replication servers allows the storage systems to handle
workloads with different intensities. On the other hand, the
possibility to allocate data replicas in different data centers
enables the storage systems to serve requests according to
their initiated locality, which significantly reduces the service
latency. However, data replication comes with the overhead of
maintaining data consistency.

When data replication is applied in a data store, whether
data replicas are consistent with each other at any given time
is defined according to the data consistency model. Replicas
diverge when they are accessed and modified by various clients

in a concurrent fashion. It is usually laborious and also not
necessary to guarantee that replicas are consistent strictly at
any time. Based on different requirements from the upper
applications that interact with the data store, different data
consistency models are introduced.

The data consistency model is a contract between a (dis-
tributed) data store and processes, in which the data store spec-
ifies precisely what the result of read and write operations are
in the presence of concurrency. Simply put, it describes under
which circumstances, the replicas are consistent, and when
they are not. Representative data consistency models include
linearizability, sequential consistency, causal consistency, FIFO
consistency, etc. In this work, we focus on systems that adopt
sequential consistency model, which is one of the most widely
used data consistency models.

More specifically, we focus on a classic approach to
achieve sequential data consistency model in a failure-prone
environment, i.e. the majority quorum. A replica quorum
consists of all the replicas of a data item. The size of a replica
quorum equals the replication degree (n). Let us assume that
a read request on a data item X is served by r number of
replicas and a write request on X is served by w number of
replicas, then the minimum requirement to achieve sequential
data consistency in a majority quorum approach is r+w > n.
Typically, a read/write request is sent to all replicas in order
to obtain a sufficient amount of replies (r and w) to satisfy the
requirement. This approach yields adequate performance when
replicas are relatively close to each other, e.g., in the same data
center. However, this is not the case in a geo-replicated storage
system, where replicas are hosted in different data centers
for performance and availability purposes. Communications
among highly distributed replicas incur significant delays.
Consequently, using majority quorums to achieve sequential
data consistency when replicas are deployed geographically
leads to significant increase in request latency.

A. Problem Formation

In this section, we investigate the cause and provide in-
sights on high request latency while using majority quorums
in a geo-distributed data store.

The setup: We assume a replicated data store deployed
in multiple data centers and replicas are not hosted in the
same data center. A data center hosts many storage instances,
which are responsible for hosting a specific part of the total
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Fig. 1: Read and write quorum operations showing a proxy at
DC1 and three storage instances at DC1, DC2 and DC3
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Fig. 2: Read operation showing periodic status messages

namespace. A storage instance manages various data items,
which are replicated among different storage instances hosted
in different data centers. The data store provides a key-value
query interface to clients. Client requests are received and
returned by storage instances from the closest data center.

A scenario: Figure 1 illustrates a scenario where the
requested data item is replicated in three data centers, i.e.
DC1, DC2 and DC3. A client close to DC1 has first issued a
write request, which has been received by one of the storage
instances in DC1, which then acts as a proxy for the request.
The request writes a value v2 of x with its request timestamp
t1 on replicas when the value of x stored locally is older than
t1. The write returns when a majority of replicas acknowledge
the write. A read is returned when it has received the replies
from a majority of the replicas. In our case, DC1 has returned
a value v1 with timestamp t1 while DC3 has returned a value
v2 with timestamp t2. Assuming t2 > t1, then v2 is returned
by the read. We use this representative scenario to explain the
causes and insights of high request latency.

The cause: The essential cause for high read request
latency is the network delay on requesting item values from
all replicas (e.g., Lreq in Figure 1) and replying the requests
(shown as Lrep in Figure 1). Essentially, Lreq is paid to ask
all the replicas, involved in a specific request, to report their
current status. Lrep is paid to deliver the status of all replicas
to the requester, i.e. the proxy.

The insight: We can avoid remote reads and only perform

local reads if the replicas send periodically their current status.
Figure 2 continues the above scenario with the focus on the
read request. The remote request message from the proxy to
DC3 is removed while periodic status messages from DC3 to
the proxy are added. Given perfectly synchronized clocks, if
the proxy waits for the status message sent from DC3 at T ,
the reply of the read request would be the same as the previous
scenario. We are going to show that we can preserve sequential
consistency while serving the read with data on DC3 earlier
than T . Specifically, we are going to show that the read can
be served with data on DC3 up to θt old with respect to its
request timestamp t4. The maximum value of θt, which defines
the maximum staleness of valid status messages, is derived in
later sections. Using the maximum value of θt dramatically
reduces the read latency when replicas are deployed in multiple
data centers.

The contributions of the paper are the following:

• We identify the cause for high latency requests when
implementing stronger data consistency models, such
as sequential consistency, in a geo-distributed data
store;

• We propose a novel fault-tolerant algorithm that per-
forms local reads and preserves sequential consistency,
which minimizes the read request latency in geo-
distributed data stores;

• We prove the correctness of the algorithm;

• We have implemented and evaluated our algorithm as
a framework, called MeteorShower, in a multiple data
center setup. We have tested MeteorShower on various
workloads that show realistic reductions in latency on
the workloads.

II. ALGORITHM DESIGN

Before describing our algorithm that minimizes quorum
reads in geo-distributed storage systems, we present our as-
sumptions of the system model and the definition of sequential
consistency, which is achieved by our algorithm.

A. System Model

We assume a system consisting of a set of storage instances
connected via a communication network. Messages in this
communication network can be delayed or lost, but cannot
be corrupted. Each storage instance replicates a portion of the
total data in the system. There is a storage process running
at each storage instance. The storage process has the whole
namespace mapping and addresses of replicas. The process is
able to access the data stored locally.

Furthermore, each process has the access to its local
physical clock. Formally, a clock is a monotonically increasing
function of real time [1]. We assume that the time differences
caused by clock drifts among different servers are bounded
to an error ε, which can be achieved by using the Network
Time Protocol (NTP). It means that the clock-time differences
between any two instances, C1(t) and C2(t), is bounded to ε,
i.e., |C1(t)− C2(t)| ≤ ε.
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B. Sequential Consistency

For the formal exposition, we define an execution to be
sequences of request and response events. A sequential exe-
cution is an execution where each request is followed by the
corresponding response. And, a legal execution is a sequential
one where each read returns the last write value. Then, we
provide the formal definition of sequential consistency (SC)
based on the definition given by Hagit Attiya et. al [2].

Definition 1. An execution δ is sequentially consistent if there
exists a legal execution γ such that γ is a permutation of δ
and, for each process p, δ|p is equal to γ|p.

SC preserves the real-time order of operations by the same
process [3]. Given the definition, we will design an algorithm
that orders all writes and inserts reads to satisfy the legality
condition while preserving process order.

First, in Section II-C, we describe our algorithm for
achieving multiple data center sequential consistency, which
performs local reads and majority writes. For simplicity, we
explain our algorithm under the deployment that the storage
namespace is partitioned identically in each data center. There
are well-known namespace mapping techniques to extend it
to handle a more general case, which is not the focus of
our algorithm. Also, we assume perfectly synchronized time
among replicas at this moment. Then, in Section II-D, we prove
the SC guarantee of our algorithm while solving the constraint
for status messages in order to be used for local reads, as
mentioned in Figure 2 and defined in Section I-A. Afterward,
we generalize the constraint of status messages when other
write APIs are employed and discuss the scenarios when time
among replicas are not perfectly synchronized in Section II-E.

C. Algorithm Description

We explain the algorithm in three parts, i.e. handling writes,
handling status, and handling reads. The main data structures
used in our algorithm is listed in table I.

A write request is first received by a proxy, which acts
as the coordinator of the request. For example, in Cassandra,
the storage server that receives the request acts as the proxy
server. Then, a request timestamp ts is generated for the write
using the local current time of the proxy. Afterward, the proxy
broadcasts the write to all the replicas of the concerned key as
illustrated in Figure 3 (a). The write request is returned when
the proxy has received acknowledgements from a majority of
replicas.

When a local storage receives the write from the proxy, it
executes the request following the algorithm described in Fig-
ure 3 (b). Specifically, it checks whether the wts in the request
is larger than the timestamp of the concerned data item stored
locally. If so, an update on the data item is performed locally
and the metadata of the update is added to a Status list, which
is used to communicate updates among replicas periodically.
Then, an acknowledgement is sent back to the proxy. In this
way, all writes are ordered deterministically based on their
request timestamps, breaking ties with node IDs.

Replicas communicate their updates, only the metadata, us-
ing status messages as illustrated in the algorithm in Figure 4.
Essentially, the algorithm has a sender and a receiver function.

Data: write(key, value)
Result: Majority write from the proxy
ts = self.currentT ime()
foreach r ∈ replicaList do

Send write(key, value, ts) to r
end
ackNum = 0
Receive ack with timeout do
if timeout then

Return timeout
end
if ack then

ackNum = ackNum+ 1
if ackNum > replicaList.size

2 then
Return Success

end
end
/* A majority write to all replicas

to ensure data availability. */

(a) Handle Write Requests - Proxy Side

Data: writeLocal(key, value, wts)
Result: Write to the local store and ack the proxy
Receive write(key, value, wts) from o do
if wts > localStore(key).timestamp then

localStore(key).write(value, wts)
Status.append((key, wts))

end
if wts = localStore(key).timestamp and
o.id > self.id then

localStore(key).write(value, wts)
Status.append((key, wts))

end
Send ack to o

(b) Handle Write Requests - Server Side

Fig. 3: Write Protocol

The sender function periodically broadcasts the metadata of
the local updates, which are maintained in a list (Status),
to remote replicas. Each entry (key, wts) in the Status list is
generated by a local update during the current dispatch interval.
A status message associates the list of entries (Status) with a
dispatch timestamp of the current interval. At the end of the
interval, the status message is sent to remote replicas.

The receiver function receives status messages from remote
replicas and merges them in a component called statusMap.
statusMap is a list of replicaStatus, which is a list of
((key, wts), sts). It means that the newest version of a key
is updated at wts observed until sts at a certain replica.
Thus, in some sense, statusMap is able to provide a slightly
outdated snapshot of remote replicas. Using the timestamps
in the statusMap, our algorithm is able to decide whether
a local version is updated enough to serve a read request,
which is explained in the following paragraphs. Status mes-
sages also wake up pending read requests maintained in the
readSubscriptionMap, which records a list of blocked reads
because of lacking up-to-date status messages or data.
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TABLE I: Data Structure used in the Algorithms

Data Structures Variables and Functions Description
Status a list of (key, wts) used to accumulate local updates in the interval between two consecutive status messages

LocalStore an object to read and write key’s value and ts locally used to access the locally stored data

StatusMap a map from replica to replicaStatus, where
replicaStatus is a list of ((key, wts), sts)

used to record the status of remote replicas

ReadSubscriptionMap a list of (key, ts) used to keep reads that cannot be served currently

ReplicaList a list of replicaAddress used to maintain the addresses of replicas in the same replication group

Data: broadcastStatus()
Result: Broadcast updates to peer replicas periodically
foreach dispatchInterval do

sts = self.currentT ime()
foreach r ∈ replicaList do

Send (Status, sts) to r
end
Status.clear()

end
/* The status message (Status, sts)

records the metadata of the local
updates during the current
dispatchInterval. */

(a) Broadcast Local Status

Data: updateStatus(replica, (Status, sts))
Result: Maintain status maps of remote replicas
Receive (Status, sts) do
statusMap(replica).update(Status, sts)
foreach (key, ) ∈ Status do

Wake reads on key in the readSubscriptionMap
end
/* statusMap is used to keep track of

updates on remote replicas. */

(b) Update Local Status

Fig. 4: Status Messages

We have to mention that status messages only contain
the metadata of each update instead of the real data. This
ensures the lightweight of the status messages and increases
the flexibility of our algorithm since most of the replicated
storage systems have their own data propagation mechanisms
for replicas. We will continue our discussions on this design
choice in the implementation section.

When a proxy receives a read, it forwards the read to the
closest replica of the requested data item as shown in Figure 5
(a). A local read request is processed as illustrated by the algo-
rithm in Figure 5 (b). Specifically, a local read does not initiate
communications among remote replicas, which significantly
minimizes the request latency. Instead, it checks the updates of
remote replicas by analyzing the each replica’s status recorded
in the statusMap. A replica r’s status is fetched by calling
statusMap(r), which is a list (((key, wts), sts)) recording
the newest version (wts) of each key observed until sts on
replica r. A read with request timestamp ts can be served
locally when satisfying the following two constraints.

Data: read(key)
Result: Return the value of key to the client
ts = self.currentT ime()
Send read(key, ts) to the closest replica r
Receive result with timeout do
if timeout then

Return timeout
end
if result then

Return result
end

(a) Handle Read Requests - Proxy Side

Data: readLocal(key, ts)
Result: Return the value of key to the proxy
Receive read(key, ts) from o do
vs = [localStore(key).timestamp]
foreach r ∈ replicaList do

Find e in statusMap(r) such that
e = ((key, wts), sts)

if sts+ θt > ts then
vs.append(wts)

end
/* θt is the maximum staleness of

status messages in the
consistency model */

end
if vs.size > replicaList.size

2 then
tslocal = localStore(key).timestamp
let L = {wts|wts ∈ vs ∧ tslocal ≥ wts}
if L.size > replicaList.size

2 then
Send localStore(key).value to o

end
end
readSubscriptionMap.append((key, ts))
/* The read needs more remote status

or updated local data to serve */

(b) Handle Read Requests - Server Side

Fig. 5: Read Protocol
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First, we need a majority of valid statuses (vs). The local
status is always a valid status. A status of a replica recorded in
statusMap has its sts larger than the read request timestamp
ts subtract a θt is also a valid status. The θt is a variable that
defines the staleness of statuses that can be used to serve a read
request. The upper bound of θt defines the maximum tolerance
of replica staleness while preserving sequential consistency. It
is obvious that the choice of the upper bound θt provides the
best performance of our algorithm. We derive the upper bound
of θt while proving the sequential consistency of the algorithm
in the next section.

Second, within the replicas having valid statuses, we com-
pare their update timestamps wts regarding the requested key
in the read. The timestamp of the local copy needs to be
greater or equal than at least half of the wts of the remote
replicas. This means that there exists a majority quorum where
the local replica has the value with the largest wts. Then, the
local value is returned for the read. Otherwise, the read is kept
in the readSubscriptionMap, which means that this read
cannot be served locally at the moment because of lacking
status messages or updated data. readSubscriptionMap is
iterated when status messages or data propagation messages
are received.

D. Proofs

From the algorithm we provided, we prove that it satisfies
sequential consistency under a specific constraint of θt.

Lemma 1. For each execution δ and every process p, p’s
read operations reflect all the values successfully applied by
its previous write operations, all updates occur in the same
order at each process, and this order preserves the order of
write operations on a per-process basis.

Proof: We first prove that Lemma 1 holds when using
majority reads and writes without the use of status messages
as explained in Section I-A. Regarding a process p, a write
returns only when a majority of replicas acknowledge the
write proposed by p. This indicates that there is a majority
of replicas that store a value at least as new as the value
proposed by p. Since any read is served by querying a majority
of replicas, a read by process p after the write will at least
have one replica reflecting the value written by p or a newer
value proposed by other processes. This is because a majority
quorum intersects reads and writes and a read returns the value
with the maximum timestamp. Since writes are applied on
replicas based on their request timestamp, this guarantees a
total order of all writes. Also, the order of writes that occur
in the same process are preserved.

The write operation in our proposed algorithm, which uses
status messages, is the same as the majority quorum write, and
therefore the writes are ordered globally and per-process. The
read operations are different. Now, we extend the above proof
to the scenario of using status messages instead of querying a
majority of replicas to serve reads. We derive the upper bound
of θt so that we also satisfy the condition on reads stated in
Lemma 1. We provide a scenario in Figure 6, where a read
operation R of key X follows a write operation W of key X
on the same process p with a delay of Δd. We assume that
Δd is close to zero. The read operation R at least observes the
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Fig. 6: Correctness condition of reads

previous write operation when it fetches the value of X after
t2 on DC1, t4 on DC2 and t3 on DC3. We define θt1, θt2 and
θt3 to be the differences between the return time of W and the
time when the write takes effect on the three data centers, i.e.,
t2, t4 and t3. Thus, to satisfy the read condition in Lemma 1,
values returned by R should be in the intervals of θt1, θt2
and θt3 or higher on DC1, DC2 and DC3 respectively. Since
the read returns the value with the highest timestamp from a
majority of the replies, we need to ensure that at least one value
is valid in the replies. Assuming θt1 ≥ θt3 ≥ θt2, then the
staleness bound should be θt3, which guarantees that reading
from any majority quorum will include a valid value.

Mapping the staleness bounds to status messages, it means
that status messages are valid for the read when the status
message timestamps sts are larger than t5 − θt3. Obviously,
the higher the value of θt3 the better performance for reads
we can achieve using status messages. Thus, we would like
to explore the maximum value of θt3 while preserving the
read condition in Lemma 1. The read condition is preserved
when the value fetched within θt3 bound is always valid
under any circumstances. Assume that the minimum message
transmission delay between DC3 and DC1 is D. Since θt3 is
the period between the time when the previous write is applied
on DC3 and the time when the write is returned from P@DC1,
then D is the upper bound on the value of θt3. Thus, given
that θt3 is bounded by D, our algorithm is able to satisfy the
read condition in Lemma 1.

Lemma 2. For each execution δ and every process p, p’s read
operations cannot reflect the updates applied by its following
write operations.

Proof: We provide a scenario in Figure 7, where a read
operation R of key X precedes a write operation W of key
X on the same process p with a delay of Δd. We assume that
Δd is close to zero. We must show that the value returned by
the read is associated with a write timestamp wt2 less than the
request timestamp t6 of the write. From the figure, we know
that wt2 ≤ t3, so we have to show that t3 ≤ t6. We have shown
previously that θt3 is greater than or equal to the minimum
message transmission delay D between DC3 and DC1. Given
Δd is close to zero, wt2 ≤ t3 ≤ (t5−θt3) ≤ (t6−θt3), which
gives t6 ≥ (wt2 + θt3). Thus, the read returns a value before
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Fig. 7: Correctness condition of writes

the write, i.e., cannot observe the updates from the write.

Theorem 1. The algorithm proposed provides sequentially
consistent reads and writes from multiple processes.

Proof: We follow the sequential consistency proof proce-
dures provided in [2]. Fix an execution δ. Define the sequence
of operations η as follows. Order the writes in η according to
timestamps associated with each write requests in δ, breaking
ties using process ids. Then, we explain the places to insert
reads. We start from the beginning of δ. Read operations
[Readp(X), Repp(X, v)] are inserted immediately after the
latest of (1) the previous operation for p (either read or write
on any object), and (2) the write that generated the value read
by the read operation of p. Given a sequential execution σ then
ops(σ) is the sequence of operations in σ.

We must show ops(δ|p) = η|p. We fix some process p and
show ops(δ|p) = η|p in the following four scenarios.

1. The relative ordering of two reads in ops(δ|p) is the
same in η|p by the construction rules of η.

2. The relative ordering of two writes in ops(δ|p) is the
same in η|p since writes are ordered with request timestamps
globally.

3. Suppose a relative ordering of read R follows write W
in ops(δ|p). By construction of η and Lemma 1, R reads the
value written by W .

4. Suppose a relative ordering of read R precedes write W
in ops(δ|p). According to Lemma 2, the read R cannot read
the value written by the write W .

Thus, we are able to prove that ops(δ|p) = η|p, i.e., our
algorithm provides sequential consistency.

E. Discussion of θt

We define the lower bound of θt to be 0 as all reads com-
pare status message with their request timestamp. The upper
bound of θt depends on the latencies between the proxy and
storage servers as well as the write mode used, which can be
”WRITE ONE”, ”WRITE QUORUM”, or ”WRITE ALL”. We
assume that the read and write modes are used correspondingly
to achieve sequential consistency, i.e., r+w > n as introduced

in Section I. As we have derived above, when writes need a
majority of replicas to acknowledge, the upper bound of θt
is the median value of the latency lower bound between the
proxy and storage servers. To generalize, when writes require
only one replica to acknowledge, the upper bound of θt is the
minimum latency lower bound between the proxy and storage
servers. On the other hand, when writes require all replicas to
respond, the upper bound of θt is the maximum latency lower
bound between the proxy and storage servers. The application
of the upper bound of θt provides the best performance of read
requests.

In practice, the clock times among servers are not perfectly
synchronized. Thus, the calculation of θt should also consider
the worst-case clock drift among servers. Under our assump-
tions that the clock difference of any two servers’ clock times
C1(t) and C2(t) is bounded to ε, i.e., |C1(t)− C2(t)| ≤ ε, we
need to subtract ε on the calculation of θt in all above three
cases.

Recall that the correctness condition for Lemma 2 is that
t6 ≥ (wt2+θt3). Taking the clock drift into account, we have
t6 ≥ (wt2 + θt3− ε). So, we have to ensure that θt3− ε ≥ 0
in order to have t6 ≥ wt2, which is the correctness condition
for Lemma 2.

To sum up, the correctness condition for our algorithm is
θt ≥ ε. In practice, the message transmission delays among
data centers are around hundreds of milliseconds while the
clock drifts among servers are around milliseconds. Thus, our
algorithm is designed for replicated storage service across data
centers.

III. DESIGN OF METEORSHOWER

A. Messages in MeteorShower

Using the algorithm above, we propose MeteorShower.
It improves read latency for majority quorum based storage
systems when they are deployed geographically. The ma-
jor insight is that instead of pulling the status of remote
replicas, MeteorShower enables replicas to report their status
periodically through status messages. Then, MeteorShower
judiciously uses the updates in the status messages to serve
reads while satisfying sequential consistency.

In the design, we have decoupled the delivery of the actual
updates and their metadata. The reason is that replicated stor-
age systems usually have their own mechanisms in propagating
updates among replicas. MeteorShower employs and wraps
the native update propagation messages to write notifications.
MeteorShower implements the periodic propagation of the
metadata of the updates in status messages.

Write notifications are used to propagate the actual up-
dates among replicas. Specifically, when a write is applied
upon a replica, the update is also sent out to its peer replicas to
eventually synchronize all the replicas. MeteorShower wraps
the delivery of updates among replicas in write notification
messages. A write notification is constructed using the follow-
ing format:

WriteNotification = {key, update, wts, vn}
It records the identification of the record (key), the updated
value of the record (update), the request timestamp of the
write (wts) and the version number of the record (vn).
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For example, write notifications in Cassandra are the
background data synchronization processes. They ensure that
replicas are eventually consistent in the system. The updates
among replicas are encapsulated in write notifications in Me-
teorShower. They not only synchronize data in replicas, but
also wake up the pending reads in readSubscriptionMap.

A status message is an accumulation of the metadata of the
updates conducted in an interval on one replica. The interval
defines the frequency of exchanging status messages and it is
configurable. A status message records the writes applied on
a MeteorShower server using the following format.

StatusMessage = {status, sts, seq, redundant}
A status timestamp (sts) is included when the status message is
sent out. It is the timestamp that we use to identify the staleness
of a status message from replicas. A status message is se-
quenced (seq) using a universal MeteorShower server ID as the
prefix. Thus, the sequence number allows recipients to group
and order status messages with respect to senders. redundant
is a history of status messages in previous intervals. It is
configurable, i.e., the number of previous status messages to be
included, to tolerate status message lost. In order to keep the
lightweight of status messages, replicas only send the metadata
of the updates happened in the current interval instead of
the metadata of the total storage namespace. The tradeoff is
that our algorithm cannot tolerate the continuous l message
loss during network transmission. l equals to the number of
historical status messages in redundant. The status is the
accumulation of the metadata of updates as a list of (key, wts)
happened during the current interval. At the end of each
interval, a status message is propagated to all MeteorShower
peers.

B. Implementation of MeteorShower

MeteorShower is completely decentralized. It is a peer
to peer middleware, which is designed to be deployed on
top of majority quorum based distributed storage systems.
MeteorShwoer consists of six primary components as shown
in Figure 8.

Status Message Dispatcher is the component that peri-
odically sends out status messages to MeteorShower peers. A
write received and processed by the write worker creates a
metadata entry recorded in local status. Entries are aggregated
to construct a status message when the dispatching interval is
reached. A status message is sent out to all the MeteorShower
peers every interval even when it is empty.

Message Receiver is a component that receives and pro-
cesses write notifications and status messages. A write notifi-
cation triggers the write worker to update the corresponding
record to the underlying storage. A status message is used to
update the status map, which decides whether a read request
could be served. Both write notifications and status messages
awake pending reads in the local read subscription map.

Status Map keeps track of status messages sent from
MeteorShower peers. It is used to check whether a read request
can be served with respect to the constraint of maximum
staleness described in sub-section II.

Read Subscription Map maintains read requests when
they cannot be served immediately because of lacking the

Fig. 8: Interaction between components

required status messages or the updated data. The read sub-
scription map is iterated when receiving new status messages
or write notifications.

Write Worker persists record to the underlying storage if
the update has a timestamp larger than the local timestamp of
the affected data item. Then, it sends out write notifications
about the update to its MeteorShower peers. In the meantime,
an entry about this update is registered in the status message.

Read Worker decides whether the local data can be used
to serve a read with the help of status messages. The read
request is kept in the read subscription map when the local
data cannot satisfy the maximum staleness constraint.

IV. EVALUATION OF METEORSHOWER

We evaluate the performance of MeteorShower on Google
Cloud Platform(GCP). It enables us to deploy MeteorShower
in a real geo-distributed data center setting. We first present
the evaluation results of MeteorShower in a controlled envi-
ronment, where we simulate multiple ”data centers” inside one
data center. It enables us to manipulate latency among different
”data centers”. Then, we evaluation MeteorShower with a real
multiple data center setup in GCP.

1) MeteorShower on Cassandra: We have integrated Me-
teorShower with Cassandra, which is a widely applied dis-
tributed storage system. Specifically, we have integrated Me-
teorShower write worker, reader worker and message receiver
components in the corresponding functions in Cassandra.
Status message dispatcher, status map and read subscription
map are implemented as standalone components. During our
evaluation, we bundle the deployment of Cassandra and Me-
teorShower services together on the same VM. We adopt the
proxy implementation in Cassandra, where the first node that
receives a request acts as the proxy and coordinates the request.
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2) The Baseline: We compare the performance of Mete-
orShower with the performance of Cassandra using different
read/write APIs. Specifically, read ”QUORUM” and ”ALL”
APIs are used as the baseline for read requests while write
”ONE” and ”QUORUM” APIs are employed as the baseline
for write requests. The choice of these sets of APIs takes
into the consideration of achieving sequential consistency.
For example, the application of read ”QUORUM” (”ALL”)
API together with write ”QUORUM” (”ONE”) API provides
sequential consistency in Cassandra.

3) The Choice of θt in MeteorShower: We have im-
plemented the MeteorShower algorithm with the lower
bound and upper bound of θt, namely MeteorShower1 and
MeteorShower2. The lower bound and upper bound of θt are
presented in sub-section II. Specifically, in the case of read
”QUORUM” (”ALL”) operation in MeteorShower, it requires
that the proxy server receives the status messages from a
majority (all) of the replicas with a timestamp larger than
T − θt. The write operations in MeteorShower are essentially
the same as they are in Cassandra.

4) NTP setup: To reduce the time skew among Meteor-
Shower servers, NTP servers are setup on each server. Briefly,
NTP protocol does not modify system time arbitrarily. Time
in each server still ticks monotonically. NTP minimizes the
time differences among servers by changing the length of a
time unit, e.g., the length of one second, in its provisioned
server. We configure NTP servers to first synchronize within a
data center, since the communication links observe less latency,
which improves the accuracy of NTP protocol. Thus, there is
one coordinator NTP server in a data center. Then, we have
chosen a middle point, where observes the least latency to all
the data centers, to host a global NTP coordinator. In this way,
NTP servers inside one data center periodically synchronize
with the local coordinator while local coordinators synchronize
with the global coordinator. NTP is used to guarantee the
bound of time drifts (ε) among servers. Empirically, we
observe that NTP is able to keep the clock drifts of all servers
within 1 ms most of the time. To be on the safe side, we
evaluate our system under the maximum drift ε = 2ms.

5) Workload Benchmark: We use Yahoo! Cloud Serving
Benchmark (YCSB) [4] to generate workload to Meteor-
Shower. YCSB is an open source framework used to test
the performance and scalability of distributed databases. It
is implemented in Java and has excellent extensibility, where
users can customize YCSB client interface to connect to their
databases. YCSB provides a configuration file, using which
users are able to manipulate the generated workload pattern,
including read/write ratio, data record size, concurrent client
thread number, and etc.

A. Evaluations in a Controlled Environment

In this experiment, we evaluate the performance of
MeteorShower1 and MeteorShower2 under different cross data
center network latencies in comparison with the original Cas-
sandra baseline approach. Since latency cannot be manipulated
in a real multi-DC setup, this experiment is conducted in
a single data center with simulated multiple ”data centers.”
Specifically, communications of VMs in different simulated
”data centers” are introduced with a static latency. The latency
is manipulated using NetEM tc commands [5].
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Fig. 9: Cassandra read latency using different APIs under
manipulated network RTTs among DCs
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Fig. 10: Cassandra write latency using different APIs under
manipulated network RTTs among DCs

For the cluster setup, we have initialized MeteorShower
and Cassandra servers with the medium instances in GCP,
which has two virtual cores. We have set up the cluster with
9 instances using 3 instances simulating a data center, which
results in 3 data centers. We have spawned another 3 medium
instances hosting YCSB in each simulated ”data center”. Each
YCSB instance runs 24 client threads and connects to a local
Cassandra/MeteorShower server to generate workloads. The
composition of the workload is 50% reads and 50% updates.

Figure 9 and Figure 10 present the read and write latency
of MeteorShower and Cassandra under different simulated
cross data center delays, which are shown in the x-axis.
We have run the workload with different combinations of
read/write APIs in MeteorShower and Cassandra. Specifically,
the workload is run against Cassandra, MeteorShower1 and
MeteorShower2 with read QUORUM v.s. write Quorum and
read ALL v.s. write ONE. We use write QUORUM instead of
write ONE in combination with read ALL in the evaluation of
MeteorShower2, which enables it to use the upper bound of
θt. The latency of each approach is aggregated from all the
”data centers” and plotted as a boxplot.

Figure 9 shows that the latency of read QUORUM
and read ALL operations in Cassandra, MeteorShower1 and
MeteorShower2 are similar. This is because that ”data centers”
are equally distanced from each other, i.e., having the same net-
work latency. Thus, waiting for a majority of replies requires
more or less the same time as waiting for all the replies. As for
Cassandra, the latency of its read operations increase with the
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increase of network latency introduced among ”data centers”.
The reason is that these operations need to actively request the
updates from remote replicas before returning, which leads to
a round trip latency. On the other hand, MeteorShower1 only
needs a single trip delay to complete read QUORUM/ALL
operations in this case. This is because that a read at time t
can be returned when it has received the status messages from
a majority/all of the replicas with timestamp t. These status
messages require a single trip latency to travel to the originator
of the read plus the delay waiting for a status message dispatch
interval of remote servers. MeteorShower1 is not suitable to
be deployed when the latency among data centers is less than
50 ms since it has non-negligible overhead in sending and
receiving status messages. Despite the consumption of system
resources, there is also a delay when waiting for a status
message, which is sent every 10 ms in our experiment. It is
reflected in Figure 9 when the introduced network latency is
0. Furthermore, this message exchanging overhead also causes
a long tail in the latency of MeteorShower operations. Thus,
MeteorShower is not suitable for applications that require
stringent percentile latency guarantees. As for MeteorShower2,
which is configured with the upper bound of θt. It can be easily
calculated that the upper bound of θt is a single trip latency
introduced minus ε. It essentially allows read operations to
return immediately since a read at time t only needs the status
messages from a majority/all of the replicas with timestamp
t − θt. Ideally, the status message with timestamp t − θt
should arrive at any ”data center” no later than t plus a status
message dispatch interval 10ms. Thus, the latency of read
QUORUM/ALL operations in MeteorShower2 remain stable
in the presence of increasing network latency among ”data
centers”.

The writes of MeteorShower1 and MeteorShower2 are the
same. So, we only show the writes of MeteorShower1 in Fig-
ure 10. Since we have not changed the writes in MeteorShower
comparing to the original implementation in Cassandra, the
performance of both approaches is similar. However, we do
observe a slightly long tail of write latency in MeteorShower,
which is caused by the frequently exchanged status messages
among servers in different ”data centers”.

B. Evaluations in Multiple Data Centers

We move on to evaluate the performance of MeteorShower
in a multiple data center setup using GCP. We have used three
data centers located in Europe, the U.S., and Asia as shown in
Figure 11. The latencies between data centers are also marked
in the figure. To make it consistent, we have used the same
instance type and configuration as the previous experiments to
set up the MeteorShower and the Cassandra cluster as well as
the YCSB. We focus our evaluations on reads, since writes are
processed identically in Cassandra and MeteorShower.

Figure 12 presents the aggregated read latency from the
three data centers. As explained in the previous evaluation,
the read requests of Cassandra experience a round trip la-
tency. Specifically, read QUORUM operations experience the
round trip latency from the closer remote data center while
read ALL operations need to wait for the replies from the
furthest remote data center. Read QUORUM/ALL operations
in MeteorShower1 observe a single trip latency from the
closer/furthest remote data center. MeteorShower2 performs
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Fig. 11: Multiple data center setup
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Fig. 12: Aggregated read latency from 3 data centers using
different approaches

the best since it can use status messages that are θt earlier
than MeteorShower1. And in this setup, the upper bound of θt
is around 50ms − ε for requests generated from Europe and
U.S. and around 75ms− ε for requests originated in Asia.

More results regarding the read request latency in each data
center are presented in Figure 13 and Figure 14. Specifically,
Figure 13 shows the results grouped by different approaches
while Figure 14 describes the latency grouped by data centers.
We focus our explanation on the impact of different delays
between data centers.
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Fig. 13: Read latency from each data center using different
APIs grouped by APIs
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Fig. 14: Read latency from each data center using different
APIs grouped by DCs

As we can see from Figure 13 and Figure 14, except
MeteorShower2, request latency in Asia is higher than request
latency in Europe and U.S. This is because that the data
center in Asia experience high latency to both Europe and
U.S. data centers, especially Europe. On the other hand,
MeteorShower2 allows read QUORUM requests to return
with the same latency as the requests in Europe and U.S.
Specifically, MeteorShower2 will expect a status message from
U.S. data center instead of Europe, which is further. And a
single trip communication from U.S. to Asia costs around
75ms, which is compensated by a higher upper bound of
θt of requests originated in Asia. Thus, the read QUORUM
requests perform the same in Asia as the requests in Europe
and U.S. even though Asia has the worst network connection.
A similar conclusion can be drawn from the performance of
read ALL, where requests perform even better in Asia than in
Europe. Because requests from both data centers need to wait
for status messages from the furthest data center. However,
requests originated from Asia has a larger upper bound of θt
(75ms− 2ms) than the requests initiated from Europe (upper
bound of θt equals 50ms−2ms). So, the read ALL latency of
requests in Asia is less than the request latency in Europe. As
for MeteorShower1, the performance of read ALL requests in
Europe are similar to the performance of read ALL requests in
Asia, since all requests need to pay for the highest latency and
Asia data center does not have the advantage of a larger upper
bound in θt. Obviously, the requests from the U.S. data center
experience the least latency in all the cases. This is because
that U.S. has the best connection to the other two data centers.

In sum, MeteorShower1 needs a little more than single trip
delay to return a read request, which is significantly faster
than Cassandra in most of the requests. MeteorShower2 is
even faster than MeteorShower1. It is able to return a read
request immediately in most of the cases taken into account the
reasonable overhead consumed to exchange status messages
among data centers. Furthermore, MeteorShower2 has a big
advantage that it allows requests originated from a not well-
connected data center (Asia) to be returned with improved
latency. To some extent, the performance of MeteorShower2
is irrelevant to the connectivity, in terms of latency, of a data
center. Overall, the latency of MeteorShower has a longer tail
than Cassandra, which makes it not suitable for percentile
latency sensitive applications.

V. RELATED WORKS

Having a global knowledge of time helps to reduce the syn-
chronization among replicas since operations can be naturally
ordered based on global timestamps. However, synchronizing
time in distributed systems is extremely challenging [6], which
leads us to the application of loosely synchronized clocks, e.g.,
NTP [7]. Loosely synchronized clocks are applied in many
recent works to build distributed storage systems that achieve
different consistency models from casual consistency [8, 9, 10]
to linearizability [11]. Specifically, GentleRain [8] uses loosely
synchronized clocks to causally order operations, which elim-
inates the need for dependency check messages. Clock-SI [9]
exploits loosely synchronized clocks to provide timestamps for
snapshots and commit in partitioned data stores. Spanner [11]
employs bounded clocks to execute transactions with reduced
delays while maintaining the ACID property.

MeteorShower assumes a bounded loosely synchronized
time on each server. It exploits the loosely synchronized time in
a different manner. Specifically, a total order of write requests
is produced using the loosely synchronized timestamp from
each server. Then, read requests are judiciously served by
choosing slightly stale values but satisfying the sequential
consistency constraint. It is novel and different from the state
of the art approaches, including Clock-SI, GentleRain, and
Spanner, by allowing slightly stale values to be served in reads
with respect to the global timeline.

Replicated logs are first proposed by G.T.Wuu et al. [12]
to achieve data availability and consistency in an unreliable
network. The concept of replicated log is still widely adopted
in the design of modern distributed storage systems [13, 14, 15]
or algorithms [16, 17]. For example, Megastore [13] applies
replicated log to ensure that a replica can participate in a
write quorum even as it recovers from previous outages.
Helios [14] uses replicated log to perceive the status of remote
nodes, based on which transactions are scheduled efficiently.
Chubby [16] can be implemented using replicated logs as its
message passing layer.

MeteorShower employs replicated logs for the similar
reason: perceiving the status of remote replicas. However,
MeteorShower exploits the information contained in the repli-
cated logs differently. The information captured in the logs
are the updates of replicas in remote MeteorShower servers.
MeteorShower uses this information to construct a slight stale
history of replicas stored in remote servers marked with
loosely synchronized timestamps. Then, MeteorShower is able
to judiciously serve requests with slightly stale values while
preserving sequential data consistency, which significantly
improves request latency.

The work of Egalitarian Paxos [18] provides performance
improvement on Paxos operations when replicas are deployed
in multiple data centers. EPaxos still requires at least a commu-
nication round to reach a decision. MeteorShower differs from
EPaxos that, most of the times, it is able to smartly make a
decision locally based on slightly stale information from status
messages. A staleness bound is derived to achieve sequential
consistency for majority quorum reads.
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VI. CONCLUSIONS

MeteorShower is a novel read-write protocol for majority
quorum based storage systems. It allows replica quorums to
serve read requests more efficiently when replicas are deployed
in multiple data centers. Essentially, MeteorShower exhausts
the exploration of a global timeline, constructed using loosely
synchronized clocks, in order to judiciously serve read requests
under the requirement of sequential consistency. The algorithm
allows MeteorShower to serve a read request without cross
data center communication delays in most of the cases. As a
result, MeteorShower achieves significantly less average and
mean read latency comparing to Cassandra majority quorum
operations. It is worth to mention that MeteorShower keeps
all the desirable properties of a majority quorum-based system,
such as fault tolerance, balanced load, etc. This is because that
MeteorShower only augments the existing majority quorum-
based operations. However, MeteorShower does observe some
overhead. It scarifies the tail latency of requests because of
the extensive exchanging of messages among remote replicas,
which saturates the network resources to some extent.

A. Known Limitations

MeteorShower, like all the storage systems relying on
majority quorums, does not tolerate the failure of a majority of
servers. Furthermore, since MeteorShower extensively utilizes
the network resources among servers, its performance depends
on the network connectivity of those servers. It is observed
in our evaluations that we have a significantly shorter tail in
latency when MeteorShower uses an intra-DC network than
an inter-DC network. The effect is more prominent under a
more intensive workload. Thus, MeteorShower is not suitable
for platforms where the performance of the network is limited.
Lastly, the data consistency algorithm in MeteorShower relies
on the physical clocks of all the servers. The correctness of
MeteorShower depends on the assumption of bounded clocks,
which means the clock of each server can be represented by
the real-time clock within a bounded error. Thus, significant
drifts in clocks interfere with the correctness and performance
of MeteorShower. Luckily, there are techniques, such as the
network timing protocol (NTP), to realize our assumption.
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