
Catenae: Low Latency Transactions across Multiple
Data Centers

Ying Liu, Qinjin Wang and Vladimir Vlassov
Department of Software and Computer Systems

KTH Royal Institute of Technology, Sweden

Email: yinliu@kth.se, wangqinjin@gmail.com, vladv@kth.se

Abstract—Serving requests with low latency while data are
replicated and maintained consistently across large geograph-
ical areas, e.g. in multiple data centers (DCs), is challenging.
We propose Catenae, a transaction framework that provides
serializable transaction support for data replicated in multiple
DCs. Catenae leverages periodic replicated epoch messages to
reduce synchronization delay among DCs, which results in the
reduction of commit latency of transactions. It employs and
extends a transaction chain concurrency control algorithm to
speculatively execute transactions in DCs with maximized execu-
tion concurrency and determinism of transaction ordering. As a
result, Catenae is able to commit a transaction with half a RTT
to a single RTT across DCs in most of the cases. Evaluations
with TPC-C benchmark have shown that Catenae significantly
outperforms Paxos Commit over 2-Phase Lock and Optimistic
Concurrency Control. Catenae doubles the throughput and halves
the commit latency comparing to the both approaches.

Keywords—Transaction; Speculative Transaction; TPC-C; 2PL;
OCC; Geo-replicated; Geo-distributed; Distributed Storage System

I. INTRODUCTION

Nowadays, data tend to be served to clients all over the
world. Large scale web applications, such as Facebook and
Twitter, tend to host and serve data from multiple DCs. This
increases service availability by allowing systems to survive
with complete outage of DCs, that can be caused by technical
problems [1], unforeseen natural disasters [2], or a sudden
surge in traffic [3]. Furthermore, spanning services across mul-
tiple DCs improves service latency since clients can access data
from a nearby DC. However, it is challenging for a database
system to realize these advantages considering the high latency
across DCs. Data partitions involved in a transaction could
be hosted in different DCs, that incurs high communication
overhead to maintain ACID properties using traditional concur-
rency control algorithms, such as two phase lock (2PL) [4] and
optimistic concurrency control (OCC) [5]. Furthermore, high
availability and low latency need data replication. Maintaining
data consistency among replicas in multiple DCs also involves
a large amount of cross DC communications.

In order to address these challenges, we investigate the
triggers of cross DC communications. In essence, these com-
munications are mainly used for synchronizations in two sce-
narios. First, algorithm maintains the total ordering of different
transactions with respect to different data partitions. Second,
algorithm tackles with the ordering of operations on replicas
for maintaining replica consistency.

We propose a framework, Catenae, which provides serializ-
able transactional support for a data store deployed in multiple
DCs. It manages the concurrency among transactions and
maintains data consistency among replicas. In order to reduce

cross DC synchronizations, Catenae leverages the insight of
using speculative executions of transactions in each DC, which
expects a coherent total ordering of transactions in all DCs and
eliminates the need for synchronizing replicas.

However, efficiently achieving speculative executions of
transactions with a deterministic order on a global scale is
not trivial. Static analysis of transactions before execution is
able to produce a deterministic ordering among transactions.
Nevertheless, this approach has the disadvantage of high static
analysis overhead and potentially inefficient scheduling among
transactions. To be specific, a complete set of transactions
needs to be analyzed and ordered at a single site in the
system, which is a scalability bottleneck and a single point
of failure. Moreover, static ordering of transactions cannot
guarantee efficient executions in terms of concurrency. Because
it is impossible to efficiently order conflicting transactions
when their access time on each data partition is unknown
before execution. Approaches, such as ordering transactions
by comparing the receiving timestamps [6], lead to inefficient
execution of transactions for the same reason.

Catenae implements and extends a Transaction Chain (TC)
concurrency control algorithm [7] to maximize the determin-
ism of transaction execution orders among multiple DCs.
TC orders transactions based on their access time on each
data partition to maximize concurrency. To give an overview,
Catenae schedules the same set of transactions to be executed
in each DC in fine-grained periods of time using a novel epoch
boundary protocol (Section V). Then, batches of the same
transactions are executed using TC in each DC without cross
DC synchronization. Catenae speculates the same execution
order of transactions under TC concurrency control in each
DC. Having a homogeneous setup in each DC can maximize
the determinism. The speculative executions are then validated
by a second phase Paxos [8].

We compare the performance of Catenae with Paxos
Commit (PC) [9] over Two-Phase Lock (2PL) [4] and PC
over Optimistic Concurrency Control (OCC) [5] under TPC-
C. Catenae achieves more than twice of the throughput than
2PL and OCC with 50% less commit latency. Both 2PL and
OCC observe significant abort rate under saturating read-write
transactional workload while it does not happen in Catenae.

In summary, our contributions are the following:

• We design and implement an epoch boundary protocol
that is used to synchronize information among DCs.

• We provide distributed protocols to efficiently coor-
dinate, execute and commit transactions.The average
execution time for a read-write transaction is slightly
larger than a round trip time (RTT) among DCs.

2016 IEEE 22nd International Conference on Parallel and Distributed Systems

1521-9097/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPADS.2016.70

491

• We implement Catenae, a low latency transaction
framework for geo-replicated data stores.

• We evaluate Catenae against PC over 2PL and PC
over OCC under TPC-C benchmark. The results in-
dicate that Catenae significantly outperforms both
approaches in terms of transaction throughput, latency
and commit rate.

II. RELATED WORK

Data Replication. Initially, data is stored in a repli-
cated fashion to improve its availability [10], [11]. Then, the
technique of data replication is also used to improve service
latency [11], [12], especially tail latency [13], since the fastest
response from any replica can be returned to clients.

Geo-replication. Nowadays, many services are serving
clients all over the world. Systems tend to replicate data in
different DCs to have a wide geographical coverage in order
to service data close to clients and provide better service
availability. Google Spanner [14] is one of the representative
system designed for serve data geographically. It benefits from
low read request latency since data are served locally. However,
maintain data consistency across a large wide-area involves
significant communication overhead, since across DC links
are with large transmission delays. Recent works [15], [16],
[14], [17], [6] optimizes the frequency of using cross DC
communications to keep data consistent.

Global Time. Having a global knowledge of time helps
to reduce the synchronization among replicas since operations
can be naturally ordered based on global timestamps. However,
synchronizing time in distributed systems is extremely chal-
lenging [18], which leads us to the application of loosely syn-
chronized clock. It is adapted in many recent works to achieved
different consistency models from casual consistency [19],
[20], [21] to linearizability [14].

Transaction Support. Previously, transactions are sup-
ported by traditional database systems where data are not
replicated. To support transactions in a large scale on top of a
storage system where data are widely replicated is challenging.
There are geo-distributed transaction frameworks that are built
on replicated commit [15], [17], paxos commit [16], [14],
and deterministic total ordering based on prior analysis of
transactions [22], [23].

Catenae is a transaction framework for geo-distributed
data stores. It differs from the existing approaches in two
ways. First, it extends transaction chains [7] to achieve de-
terministic execution of transactions without prior analysis of
transactions. This improves transaction execution concurrency,
removes bottleneck and single point of failure. Second, a
novel epoch boundary protocol is designed and implemented to
coordinate transaction executions in multiple DCs with reduced
RTT rounds. Updates are not requested (requires a RTT) but
rather actively propagated (requires half a RTT) under epoch
boundary protocol among DCs.

Comparing to the original transaction chain algorithm
proposed in [7], Catenae extends the algorithm for replicated
data stores. Specifically, Catenae allows multiple versions of
a record in chain servers to enable read-only transactions and
support transaction catch ups in case of replica divergence. The
extended transaction chain algorithm manages the concurrency
among transactions in the same DC while the epoch boundary
protocol controls the execution of transactions among DCs.

III. CHALLENGES

Achieving low latency transactions while maintaining seri-
alizability in a geo-distributed environment is not trivial. The
time spent from receiving a transaction until it is committed
and returned to the client defines the latency of a transaction.
A transaction may need to obtain consensus from data replicas
stored in other DCs before committing. This process involves
message transmission delays among DCs and concurrency
delays to reach a consensus on a serializable execution order of
conflicting transactions in all DCs. When consensus is reached,
a transaction is executed with an execution delay.

The transmission delay depends on the locations and
connectivity of DCs and usually cannot be optimized. Re-
ducing the message exchanging rounds among DCs to reach
a consensus on the execution of transactions are studied in
recent works [15], [16]. It is theoretically proved that the lower
bound for two conflicting transactions to commit and maintain
serializability in two DCs is the RTT between them [6].

The concurrency delay is the time spent for a transaction
to be allowed to commit in all DCs. The concurrency delay
is caused by conflicting transactions. Examples of the concur-
rency delay can be the waiting time for locks in 2PL or the
time spent to abort and retry in OCC.

The execution delay is subjective to the competence of the
hosting platform and the efficiency of the underlying storage
system while performing read and write requests.

A. Proposal

Catenae executes transactions with low latency by improv-
ing the transmission and concurrency delays. In order to reduce
message synchronizations among DCs, it first speculatively
executes transactions in each DC and validates later to commit
transactions executed with the same dependency in all DCs.

Many previous works [23], [22] achieve this by analyzing
transactions before execution and giving priority to some
transactions while aborting or suspending conflicting trans-
actions, in order to have only non-conflicting transactions
to be executed in parallel on data replicas. In essence, the
concurrency control in those approaches is similar to two
phase locking (2PL), which increases the transaction execution
time and limits the throughput. For example, a transaction T1

arrives at t1 and writes on data partition a and b while another
transaction T2 arrives later at t2(t2 > t1) and writes on data
partition b. T1 and T2 are conflicting with each other and a total
order needs to be preserve on all replicas of data partition a and
b in order to maintain serializability. Usually, a static analysis
before the execution is hard to know which transaction should
have the priority to be executed first. Typically, such priority
is given based on the arrival time of transactions. Thus, T1 is
ordered before T2. Assuming the time spent on writing each
data partition is constant Δt, then, the execution time of T1

and T2 is 2 ∗ Δt + Δt = 3 ∗ Δt. Obviously, this type of
concurrency controls can potentially block the concurrency of
transaction executions.

Catenae pushes transaction execution concurrency to the
limit by delaying the decision on transaction execution orders
until they are conflicting a shared data partition. This allows
transactions to be ordered naturally by their execution speed
rather than their arrival time. Back to the example, assuming T2

arrives slightly behind T1, which gives t2−t1 < Δt, T2 is able
to access data partition b before T1 since T1 has not finished
writing on data partition a. When T1 has finished writing on

492

a and continues to write on b at time t1 + Δt, it observes
that T2 is in the middle of writing on b. Then, T1 is naturally
ordered behind T2 and will write on b until T2 finishes. The
total execution time of T1 and T2 is Δt + t2 − t1 + Δt =
2 ∗Δt+ t2− t1 < 3 ∗Δt. A formalization of this concurrency
control is a transaction chain concurrency control algorithm,
which will be explained in details in Section VI.

The insight in Catenae is that the execution speed of
transactions on each record is unique and deterministic. Ideally,
Catenae believes that given the same set of transactions to
multiple fully replicated DCs, the execution order of the
conflicting transactions in these DCs are likely to be the same
using the transaction chain concurrency control. Experimen-
tal validations (Section III-B) and evaluations (Section VII)
of Catenae under a symmetric cluster setup, i.e. the same
VM instance type in multiple DCs on top of Google Cloud
Platform, shows that most of the conflicting transactions are
ordered identically in all DCs. Thus, Catenae first speculatively
executes the same set of transactions in each DC. Then,
inconsistent executions will be corrected by a validation phase.

B. Validations of the insight

We validate the success rate of speculative executions of
Catenae in three DCs of Google Cloud Platform. Specifically,
we have randomly generated 10000 records and replicated
them on 4 storage servers in each DC. These random records
have different data sizes, which leads to different access
times when reading or writing on the records. Then, we have
a coordinator in each DC that generates transactions with
specific throughput to the 4 storage servers in the same DC. We
guarantee that coordinators generate the same transaction se-
quence with Poisson arrivals. Each transaction will read/write
1 to 4 data records out of 10000 records. The distribution
of the record accessed is configured to be uniform random,
zipfian with exponent 1 or zipfian with exponent 2. Figure 1
presents the evaluation of running 100000 transactions in each
DC. Those transactions are generated to the storage servers
with different rates, which are from 1000 to 11000 request per
second as shown on the x axis. Storage servers execute transac-
tions using transaction chains concurrency control algorithm.
In short, the algorithm orders transactions based on the access
order on the first shared data record. A simple example of the
algorithm is presented in the previous section and the detailed
explanation of the algorithm will be discussed in Section VI
The execution dependencies of each transaction in each DC
are compared. If the execution dependency of a transaction is
the same in all three DCs, it means a success in speculative
execution. Otherwise, the speculative execution is invalid. The
y-axis in Figure 1 illustrates the success rate of speculative
execution under 3 workload access patterns, i.e., uniform
random, zipfian with exponent 1 and zipfian with exponent
2. The results indicate that the transaction chain algorithm is
able to allow transactions to be executed on record replicas
without coordination but still yields a very high (above 80%)
result consistency rate (success rate of speculative execution)
when the access pattern of the workload is uniform. Even when
the access pattern is zipfian with exponent 1, Catenae is able to
obtain a reasonable success rate (above 60%) on speculative
execution using transaction chains. However, the evaluation
results also show that the speculative execution will fail with
extremely contended access pattern (zipfian with exponent 2).

Fig. 1. Success rate of speculative execution using transaction chain

IV. THE CATENAE FRAMEWORK

Transaction Client. Catenae has a transaction client
library for receiving and pre-processing transactions. Trans-
action clients are the entries of Catenae in each DC. They
pre-process transactions from standard query languages, such
as SQL, and chop them to sequences of key-value read/write
operations.Then, pre-processed transactions are forwarded to
coordinators for scheduled execution among DCs.

Coordinator. There is one coordinator in each DC, which
is responsible for the speculative executions and validations of
transactions among DCs. It is achieved through the exchange
of epoch messages among coordinators in different DCs in a
fixed time interval. We defer the explanation of epoch mes-
sages in Section V Coordinators are designed to be stateless
in each DC, thus Catenae can have multiple coordinators in
one DC by partitioning the responsible namespace range.

Secondary Coordinator. There is an optional secondary
coordinator for each DC that stands by the coordinator in that
DC. Secondary coordinator receives duplicated epoch mes-
sages from other coordinators. It becomes primary coordinator
when the coordinator fails.

Chain Servers. Transaction chain servers are hosted to-
gether with storage nodes of a NOSQL data store. Transaction
chain servers are responsible for traversing of a transaction
chain by passing through its forward and backward pass phase,
during which, it maintains and resolves transaction dependen-
cies and conflicts, record temporary copies of transaction exe-
cution results, and issues corresponding NOSQL operations to
the underlying storage servers when the transaction commits.
The transaction chain algorithm is explained in Section VI

Transaction Resolver. There is a transaction resolver in
each DC. It maintains implicit dependencies to avoid cyclic
dependency among transactions. It is queried by transaction
chain servers when they suspect a formation of a circle during
transaction execution. Transaction resolvers perform a topol-
ogy sorting among transactions with respect to the existing
explicit dependencies. Then, a circle-free implicit dependency
is returned to the chain server and stored in the transaction
resolver for further queries until the involved transactions have
committed or aborted.

V. EPOCH BOUNDARY

Epoch boundary is a concept similar to logical clock
proposed by Lamport, but using the real time from the system.
It separates continuous time into discrete time slices. The start

493

or end of a discrete time slice is a boundary. Time boundaries
are used as synchronization barriers among replicated servers
deployed in different DCs. In Catenae, synchronizations of the
status of replicated servers are not triggered by events, such
as a transaction is received by one server or a consensus is
needed to validate an execution result, but rather is conducted
periodically at each boundary. The advantage of actively syn-
chronizing server states among DCs is that it reduces the delay
for a DC to realize the updates from other DCs. Specifically,
when a DC needs additional information to proceed an opera-
tion, for example, to validate whether it holds the most recent
data copy, it does not need to send a request and wait for a
response to/from another DC, but rather wait for the next epoch
boundary. It optimizes the communication latency among DCs
from a RTT to a single trip plus the delay of an epoch. Epoch
boundaries are not suitable to be implemented in low latency
networks, such as intra DC networks, when inter-server latency
is low. In this case, a RTT is rather short comparing to an
epoch. Furthermore, periodically sending and receiving epoch
messages also involves non-trivial overhead. However, this
approach prevails when servers need to communicate through
high latency links, such as inter DC links, when an epoch delay
is negligible comparing to a single message trip. Specifically,
the typical RTTs among DCs are from 50ms to 400ms, which
can be easily measured through [24]. In contrast, the typical
setup of the epoch interval is from 5ms to 30ms.

As shown in Figure 2, DC2 is able to aware an event
happened at t in DC1 with delay less than C +E. However,
with active queries, DC2 will know the status of DC1 after
a delay of 2 ∗ C, which is significantly larger than C + E.

In order to ease the maintenance of server membership and
reduce the overhead of sending epoch messages, there is one
coordinator server in each DC to maintain epoch boundaries.
Time in each coordinator server is synchronized using NTP
to minimize the time drifts. The length of the epochs is a
globally configurable parameter. Epochs are associated with
monotonically increasing epoch IDs that is coherent on each
coordinator. At the end of each epoch, a synchronization
boundary is placed with the dispatching of status updates
(payload) from/to all coordinators using epoch messages.

A. Transaction Distribution Payload

The first part of epoch payload relates to transaction
distribution. Ideally, with epoch boundaries, each DC is able
to acquire the transactions received from other DCs with a
single cross DC message delay plus an epoch. By knowing
the complete set of input transactions in an epoch, Catenae
can speculatively execute transactions using the TC algorithm
(Section VI-C) and maximize the possibility to obtain a
coherent execution order of conflicting transactions in all DCs.

B. Transaction Validation Payload

The second part of epoch payload concerns about trans-
action validation. The speculative executions need to be vali-
dated on the execution order of conflicting transactions in all
DCs since they can be executed in different orders. Catenae
leverages a light-weight static analysis of input transactions
to create different transactions sets. The transaction set with
conflicting transactions needs a validation phase to confirm
their execution results. We defer the explanation of the multiple
DC transaction chain algorithm in Section VI.

C. Batching and Dispatching of Payloads

For transaction distribution payload, all coordinators batch
transactions received in each epoch. These transactions are
associated with a local physical timestamp when it is received
by Catenae. For transaction validation payload, coordinators
batch conflicting transactions that have finished in each epoch
along with their execution dependencies. The batched payloads
are sent among coordinators at the end of each epoch. In-
stead of simply exchanging the payload of the current epoch,
coordinators also attach the payload from the previous two
epochs. According to our experiments, the redundancy in
epoch payloads effectively handles message losses and delays
during transmission among coordinators.

VI. MULTI-DC TRANSACTION CHAIN

The life cycle of an transaction in Catenae includes
received, scheduled, executed, finished, and committed (re-
turned). We present the multi-DC transaction chain algorithm
with the explanation of the life cycle of a transaction.

A. Receive Transactions

Coordinators receive transactions from other coordinators
in epochs. Due to the transmission delays, transactions received
in the current epoch are transactions sent by other coordinators
in a past epoch. For example, in Figure 2, transactions received
by DC2 at ey are transactions sent from DC1 at ex. The epoch
ID (EID) is used to identify an epoch message. Coordinators
continuously receive and keep track of epoch messages from
other DCs and aggregate them by EIDs. With the complete
receipt of epoch messages from all the coordinators concerning
the same EID, the transactions in the epoch messages are
grouped together and moved to transaction schedule phase.
Transactions in lower EIDs are scheduled before transactions
in higher EIDs. This allows Catenae to have a more consistent
execution of transactions in each DC. However, it also puts
limitations on Catenae when there are failures, which is
discussed in Section VIII.

B. Schedule Transactions

Transactions are chopped into a set of read and write
operations by Catenae client library. Read and write operations
of a transaction are ordered deterministically based on the
accessed data partitions. The data partitions are traversed in
the deterministic order monotonically by the transaction chain
algorithm. Specifically, operations are mapped to Catenae
chain servers that store the corresponding data partitions.
Then, the transaction is sent to the chain server that hosts the
first accessed data partition to start traversing. Thus, Catenae
does not support transactions that have cyclic or conditional
accesses on any data partitions.

C. Execute Transactions

Transaction execution in each DC is handled by a transac-
tion chain (TC) concurrency control protocol. It allows concur-
rent transactions to commit freely in the natural arrive order on
the storage servers unless doing so will violate serializability.
This property maximizes the transaction execution concurrency
by allowing transactions to execute based on their execution
speed and wait only if a faster transaction already occupied the
resources on a per-key granularity. This means that transaction
execution is not based on a predefined order given by the prior
static analysis [23], [22] or the arrival order, but the access

494

Fig. 2. Epoch Messages among Data Centers

order at a shared data partition where two transactions issue
conflict operations. Since transactions are executed in DCs
individually, we explain the TC algorithm from the perspective
inside one DC. The algorithm needs to pass through two
phases, i.e., forward pass and backward pass.

1) Forward pass: The forward pass does not conduct
any read/write operations, but rather leaves footprints of a
transaction on accessed data partitions. These footprints are
used to identify conflicting transactions. It starts with the
coordinator sending a transaction to the first accessed chain
server as specified in the chain. The chain server records the
data partitions that the transaction reads or writes, then the
transaction is forwarded to the next chain server specified in
the chain until reaching the end of the transaction chain.

2) Backward pass: When a transaction is on the last server
of its transaction chain during the forward pass, it starts the
backward pass phase. The backward pass examines whether
other transactions that have left footprints and have pre-
committed values on the accessed data partition. If not, the
transaction may read or pre-commit on the data partition.
Otherwise, the pre-committed transactions are added as de-
pendent transactions of the current transaction. The following
backward pass of the transaction needs to strictly obey the
dependency, i.e. ordering behind the dependent transactions.
It summarizes as the first execution rule. Specifically, for
example, in Figure 3, T1 has conducted backward pass and pre-
committed a write on partition S5 : k5 before T5. So, T5 adds
T1 as its dependent transaction. Then, T5 backward passed to
S1 : k1 before T1. T5 knows T1 will access S1 : k1 because it
has left a footprint on S1 : k1 during its forward pass. Thus,
T5 needs to wait for T1 on S1 : k1 even it arrives earlier in
order to maintain serializability on S1 : k1 and S5 : k5.

Rule 1: A transaction depends on another transaction if it
comes later to the first shared partition in its backward pass.
And the transaction is consistently ordered after transactions
that it depends on regarding all the shared partitions afterwards.

In addition to explicit dependencies added by Rule 1, a
transaction also has to satisfy a set of implicit dependencies.
Implicit dependencies are added to a transaction to prevent
cyclic dependencies. For example, in Figure 3, according to
Rule 1, T3 is ordered after T4 when accessing S3 : k3. And
T4 is ordered after T1 when accessing S2 : k2. Transitive
relation gives T3 should be ordered after T1, otherwise a cyclic
dependency will form. However, without any hints, T3 could
be ordered before T1 when it arrives faster on S1 : k1.

Implicit dependencies are added by a transaction resolver,
which has a global view of potentially conflicting transactions
in all chain servers. Detecting complete cyclic behaviors could
be a NP-hard problem. Our resolver uses the pattern shown in
Figure 4 to detect potential cyclic behaviors, which is proved
to be effective and efficient in detecting cyclic dependency
in transactions [25]. A topology sorting request is sent from a

Fig. 3. An example execution of transactions under transaction chain
concurrency control

chain server to the resolver, when the above pattern is captured.
The resolver provides a serializable sorting of the transactions
that does not violate the observed constraints recorded in its
transaction dependency repository. The repository stores the
dependencies that have been observed by the resolver from
requests sent by other chain servers. Then, the sorting result
is returned to the chain server and recorded in the transaction
dependency repository for future queries.

Continuing the above example in Figure 3, T4 knows that
it is ordered before T3 on S3 : k3. and when it knows that it
is ordered after T1 on S2 : k2, the pattern in Figure 4 forms.
So, S2 requests a topology sorting to the resolver. The resolver
returns the only serializable topology sorting T3 ordered after
T1. When T3 passes to S1 : k1, the pattern also forms because
it has dependency with T4 and about to have dependency with
T1. So, S1 : k1 queries the resolver, which will return the
already calculated constraint in its repository, which is T3 ⇒
T1. So, T3 waits for T1 on S1 : k1.

When a transaction has acquired both the explicit and
implicit dependencies, it attempts to read/write temporary
values on a chain server, which is the second execution rule.

Rule 2: If all dependent transactions have already pre-
committed or aborted on the particular chain server, the current
transaction is able to pre-commit. Otherwise, the transaction
needs to wait until the condition is satisfied.

495

Fig. 4. Potential Cyclic Structure

D. Validate Transactions

Since Catenae speculatively executes transactions in all
DCs using TC without synchronization, conflicting transac-
tions can be executed with different dependencies. Speculative
executions with validations tradeoff Catenae’s percentile per-
formance for its average performance.

1) Non-conflicting Transactions: If transactions access data
partitions that are solely accessed by themselves, there is no
need for transaction validations since the commit orders among
these transactions can be different in different DCs while
serializability is still preserved. These transactions are non-
conflicting. A transaction that is not conflicting with the others
when the accessed data partitions are not accessed by other
transactions until the end of this transaction’s backward pass.
A transaction can finish its backward pass at different times
in different DCs and this may cause inconsistent judgement
on whether the transaction is non-conflicting or conflicting.
To solve this issue, a priority is given to the DC where the
transaction is initiated since it will be the DC that returns the
execution result to the client. If this DC decides a transaction
to be non-conflicting, then it will skip the validation phase
and return the results to the client directly. In this case, a
dominant result will be propagated to other DCs to commit
the transaction.

2) Conflicting Transactions: Conflicting transactions need
to reach a consensus among DCs on their execution depen-
dencies. The execution results and the execution dependencies
are part of the payload in the epoch messages as described
in Section V. Upon receiving the majority execution results
of a transaction from other coordinators, a second phase of
the Paxos algorithm [8] is executed independently on all
coordinators. Specifically, when there are a majority of DCs
that have executed the transaction with the same dependency,
then the transaction will be committed with this dependency.
DCs that have executed the transaction with this dependency
prepare to commit the temporary read/write operations from
chain servers to their underlying storage servers. DCs that have
performed the transaction with other dependencies will need
to perform a catch up procedure explained below.

E. Commit Conflicting Transactions

When a transaction is allowed to commit in a DC, it checks
whether its dependent transactions are committed or aborted.
If all its dependent transactions are committed, the transaction
is able to commit by choosing a commit timestamp from the
intersect of decision periods from all DCs. The decision period
is a period of epochs when all DCs are expected to received the
execution result of a transaction. The lower bound of a decision
period is calculated using the current epoch plus an estimated
message delay. The upper bound of the decision period is the
lower bound plus an offset, which denotes the maximum delay
that can be tolerated during message transmission among DCs.
The decision period of a transaction from different DCs might
be slightly different because of the difference of the execution
environment. We deterministically choose the maximum epoch
of the intersect of the decision periods from all DCs to tolerate
possible delays on the arrivals of the execution results from

other DCs. Then, the transaction commit message is sent to all
the involved chain servers and, in the meantime, the transaction
is returned to the client. Chain servers that have received
commit messages from the coordinator commit the operations
from the transaction to the underlying storage servers and
remove the corresponding dependencies.

If there are uncommitted dependent transactions the pre-
committed transaction has to wait until the dependent trans-
actions are committed, caught up or aborted. In this case, the
commit epoch may increase beyond the decision period and
is deterministically chosen to be the next epoch of the last
committed dependent transaction. If the dependent transactions
need to catch up, the transaction will need to catch up as
well, since it is executed with a super-set dependency. If the
dependent transactions are aborted, then the transaction is able
to commit if the transaction only write-dependent on the shared
key, otherwise, the transaction is aborted as well.

Transaction Catch Up. DCs that have executed a transac-
tion with a different dependency from the majority dependency
need to catch up its execution. The catch up of a transaction
is executed when all its dependent transactions are committed,
aborted or caught up. The catch up procedure applies update
operations in a transaction with the majority voted timestamps
to the underlying storage system.

Transaction Abort. Transactions can be aborted for
various reasons. For example, aborts are issued by Catenae
when no majority can be reached on the execution results from
all DCs. Aborting a transaction removes its dependency and
temporary updates on the chain servers and the resolver.

F. Read Only Transactions

The advantage of a geographically distributed transactional
storage system is its ability to serve data close to its clients,
which achieves low service latency. In order to achieve that,
it is essential to support transactions that can be executed and
returned locally. Catenae allows read only transactions to be
executed locally while still maintaining ACID property.

Read only transactions are processed by reading values
concurrently from the corresponding chain servers. They can
be returned when it is not in the decision period of a transaction
with uncommitted write on a read data partition. Since all
transactions with write operations are committed by choosing
the largest possible timestamp of the intersect of decision
periods from all DCs, it is safe to read values from the
underlying storage servers before the lower bound of a decision
period. If the read only transaction has read a data partition
during the decision period of an uncommitted transaction that
has uncommitted writes, it will retry after a short delay.

VII. EVALUATION

The evaluation of Catenae is performed on Google Cloud
with three DCs. The performance of Catenae is compared
against Paxos commit [9] over Two-Phase Lock (2PL) [4]
and Paxos commit over Optimistic Concurrency Control
(OCC) [5]. The evaluation of Catenae focuses on perfor-
mance metrics including transaction commit latency, execution
concurrency (throughput) and commit rate. We measure the
performance of Catenae under different workload compositions
and setups to explore its most suitable usage scenarios using
a microbenchmark and standard TPC-C benchmark.

496

A. Implementation

Catenae is implemented with over 15000 lines of Java
code. Chain servers and coordinators are implemented as state
machines. They employ JSON to serialize data and Netty
sockets to communicate among chain servers and coordinators.

2PL and OCC implementation. Two-phase Lock is
implemented by using Paxos commit for managing data repli-
cation among DCs and two-phase lock inside DCs to avoid
conflicts. There is a coordinator in each DC to manage the lock
table and synchronize data replicas when transactions commit.
During transaction execution, the coordinator acquires locks
and issues temporary writes of the involved data partitions to
corresponding data servers (first phase of Paxos commit). The
coordinator is able to lock a data partition when the majority
of DCs are able to lock the data partition. During transaction
commit, the coordinator issues commit messages to other DCs.
A transaction is committed when a majority of DC commit
(second phase of Paxos commit). Wound-wait mechanism [26]
is used to avoid deadlocks.

Optimistic concurrency control also cooperates with Paxos
commit to manage data replicas. There is a coordinator in
each DC to validate the execution results and synchronize data
replicas when transactions commit. Transactions are distributed
and executed in all DCs with records on the versions of data
partitions that have been read and written. Temporary values
are buffered on data servers. Temporary execution results with
versions of accessed partitions are voted and validated among
coordinators (first phase of Paxos commit). A transaction com-
mits when a majority of DC commit (second phase of Paxos
commit). Our OCC implementation allows aborted transactions
to retry one time before returning aborts to clients.

B. Cluster Setup

Our evaluations are conducted using Google Cloud Com-
pute Engine. Specifically, Catenae, 2PL and OCC systems are
deployed in three DCs, i.e. europe-west1-b, us-central1-a and
asia-east1-a. Inside each DC, four Cassandra nodes are used
as storage backend running on Google n1-standard-2 instances,
which have 2 vCPUs and 7.5 GB memory. Each DC has an
isolated Cassandra deployment since data replication is already
handled. Catenae chain server, 2PL server daemon and OCC
server daemon are deployed on the same servers as Cassandra
nodes. Committed writes are propagated to Cassandra using the
write-one interface. A Google Cloud n1-standard-8 instance (8
vCPUs and 30 GB memory) is initiated in each DC to serve
as a coordinator in all three systems. For Catenae, transaction
resolver is configured together with coordinator. A Google
Cloud n1-standard-16 instance (16 vCPUs and 60 GB memory)
is spawned in each data to run the workload generator. The
workload generator propagates workload to services deployed
in the same DC. Another n1-standard-16 instance is spawned
in each data to serve as frontend client server.

Configuration of Catenae. The epoch length in Catenae is
configured as 10 ms, which yields reasonable tradeoff between
coordinator utilization and transaction synchronization delays
as later shown in Figure 6.

C. Microbenchmark

We implement a workload generator that is able to gener-
ate transactions with different number of accessed partitions,
different operation types (read/update/insert) and different
distribution (Uniform/Zipfian) of accessed partitions. Under

different workload compositions, we evaluate the performance
of Catenae and the results are compared with 2PL and OCC.
Then, an evaluation on the effect of varying epoch length in
Catenae is also presented.

Workloads. We evaluate with two types of transactional
workloads, i.e. read-only and read-write, with a namespace of
100000 records. Read workload is constructed with transac-
tions that only read on data partitions. Read-write workload
is formed with transactions that read, write or update data
partitions. An update is translated to a read followed by a write
on the same data partition. Each transaction randomly embeds
one to five data partitions to be accessed. The access pattern
of the involved data partitions can be uniform or zipfian with
the exponent equals to one.

1) Results: Figure 5 shows the evaluation results of Cate-
nae, 2PL and OCC under read-only and read-write transac-
tional workloads with uniform and zipfian data access pat-
tern. We use commit latency, throughput and abort rate as
performance metrics. The results shown in Figure 5 are the
aggregated values from three DCs.

The performance of Catenae, 2PL and OCC is comparable
under uniform read-write workload. Under this workload, all
three approaches need to synchronize data replicas with remote
DCs but transactions are not likely to conflict with each other
since the data access pattern is uniform. Catenae outperforms
2PL and OCC because of the application of epoch boundary
protocol and the separation of conflicting and non-conflicting
transaction sets. They have enabled Catenae to commit non-
conflicting read-write transactions with a little more than a
half RTT and commit conflicting read-write transactions with
slightly more than a single RTT.

The throughput of 2PL and OCC start to struggle and
plateau with the increasing number of clients under zipfian
read-write workload, where transactions are likely to conflict
with each other. As expected, OCC observes significant abort
rate under this workload. On the other hand, Catenae scales
nearly linearly under both uniform and zipfian workload. This
is because of the efficient scheduling of concurrent transactions
using the transaction chain concurrency control. Specifically,
transactions are not contended until they begin accessing a
shared data partition concurrently. Only at this point, the
execution dependencies are established. Even so, transactions
are allowed to proceed and commit given that the established
dependencies are preserved. In sum, the speculative execution
using transaction chains achieves very high success rate even
under zipfian (with exponent=1) workload as validated in
Section III-B (Figure 1).

The performance of 2PL and OCC under read-only work-
load is similar to their performance under uniform read-
write workload since both workloads requires 2PL and OCC
to synchronize replicas in remote DCs. The only different
is that there is no conflict while executing and committing
transactions, which leads to a higher throughput and lower
commit latency in both approaches. In contrast, Catenae ob-
serves more than three times performance gains in both latency
and throughput since read-only transactions can be processed
locally in Catenae. It is enabled because the lower-bound
of EID that a write-involved transaction is scheduled to be
committed is known when it enters the validation phase, which
requires a proposal of a decision period (Section VI-E). Thus,
it is safe to return a read-only transaction locally when its
timestamp is lower than the lower-bound of the decision period

497

Fig. 5. Performance results of Catenae, 2PL and OCC using microbenchmark

Fig. 6. Commit latency VS. varying epoch lengths using 75 clients/server
under uniform read-write workload

of a write-involved conflicting transaction. Otherwise, the read-
only transaction is retried after 50 ms.

Varying the Epoch Length. To further study the per-
formance of Catenae, the varying size of epoch length is
evaluated. As shown in Figure 6, transaction commit latency
starts to increase steadily with epoch length more than 20 ms.
This is because that transactions will only be executed after
they are propagated to all DCs. The longer the epoch length,
the more delay is imposed on transactions. However, too short
epoch length leads to frequent exchanging of epoch messages
among coordinators, which introduces performance bottleneck.
Thus, there is a tradeoff between the length of an epoch and
the overhead imposed on coordinators. So, we choose 10 ms
to be the epoch length in Catenae in all the evaluations.

D. TPC-C

We implement TPC-C under the current specifications [27]
with interfaces that propagate workload to Catenae, 2PL and

OCC. TPC-C is an on-line transaction processing (OLTP)
benchmark from the Transaction Processing Performance
Council (TPC). Two representative operations in TPC-C
benchmark, i.e. NewOrder and OrderStatus, are chosen and
implemented for the evaluation.

1) Results: Figure 7 illustrates the evaluation results of
Catenae, 2PL and OCC under extremely stressed TPC-C
workload. The results are aggregated from the three operating
DCs. Catenae is able to scale up from 25 clients/server to
100 clients/server under TPC-C NewOrder workload, after
which its performance stays stable. 2PL and OCC follow
similar scale up pattern. However, they only achieve roughly
half of the throughput comparing to Catenae, which causes
the doubling of latency. With more than 100 clients/server,
there is a drop of throughput in OCC and 2PL because
of high contention. The abort rate of 2PL increases when
there are more conflicting transactions waiting for locks, since
we have set a timeout on waiting for locks. OCC suffers
from constantly significant abort rates under the NewOrder
workload since there is extremely high read-write contention
among transactions. Catenae maintains very low abort rates
by efficiently scheduling concurrent transactions using trans-
action chain algorithm. It allows Catenae to achieve higher
concurrency, which leads to a higher throughput of transaction
execution. Additionally, the high success rate of speculative
execution even under contended workload allows Catenae to
commit transactions with low latency as shown in Figure 1.
Thus, the faster transactions commit, the less contention is
experienced in Catenae.

OrderStatus is a read-only transaction. Catenae judiciously
processes read-only transactions in local DCs when the ac-
cessed records are not about to be committed to an updated

498

Fig. 7. Performance results of Catenae, 2PL and OCC under TPC-C NewOrder and OrderStatus workload

value. This condition is always true when running a read-only
workload against Catenae. Thus, Catenae is able to commit
read-only transactions locally, which significantly reduce the
commit latency and boosts the throughput. In contrast, 2PL
needs to check and obtain read locks across DCs while OCC
requires to validate the read values across DCs. As a result,
Catenae achieves more than twice the throughput of 2PL and
OCC with nearly 70% less commit latency.

VIII. PERFORMANCE AND LIVENESS TRADEOFF

A. Speculative Execution

Catenae provides efficient transaction support on top of
fully replicated data stores, such as [28], [29], [17], [30],
[31]. Since Catenae relies on a deterministic duration that
a transaction accesses a specific data partition on a specific
chain server, it is desirable, but not mandatory, to deploy
chain servers symmetrically, i.e., using the same VM flavor to
host the same namespace range, in all DCs. For performance
predictability and cost control, it is common and reasonable
to host the instances of a specific component of an application
using the same VM flavors in today’s Cloud platforms. Hosting
the chain servers of Catenae asymmetrically among DCs will
increase the possibility to have an inconsistent transaction
execution dependencies during speculative executions among
DCs. This will not influence the correctness of Catenae but
triggering the catch up procedure and delaying the transaction
commit to two RTTs, which is the same latency overhead
comparing to the classic 2PL over Paxos commit. We validated
in Section III-B, it is likely to achieve the same execution
dependency in most of transactions speculatively executed
using TC concurrency control. Speculative executions with
consistent results in all DCs enable transactions to commit
using a single RTT.

B. Liveness among Data Centers

Catenae does not pre-order transactions before execution,
they are allowed to compete and concurrently execute at run-
time. It maximizes the concurrency of transaction executions.
However, Catenae expects DCs to execute the same set of
transactions received from the epoch messages sent from all
DCs, which leads to the most consistent transaction dependen-
cies during speculative execution. The consistent dependencies
during speculative execution allows Catenae to have extremely
low commit latency, but comes with a tradeoff. An outage of
a DC could cause other DCs to block waiting for its epoch
message, which contains the transactions received in that DC.

The blocking continues when the expected epoch messages are
eventually delivered. This is similar to blocking scenarios in
2PL, that could be overcome by using state machine replica-
tion. Catenae applies a time-based delay tolerance technique
to ascertain the state of a failed DC. Large delay tolerance
may result in endless waiting for the epoch messages from
a failed DC, that largely influences the performance. Small
delay tolerance may neglect the transactions happened in the
”suspected failed” DC and result in periodic high transaction
abort rates in that DCs or a lot of transaction catch up
workload across DCs. Thus, this design choice tradeoffs the
high possibility to have consistent dependency during spec-
ulative execution with the complication of failure handling.
Specifically, a configurable time-based offset is implemented
in Catenae to record the differences between the epoch to
execute a batch of transactions from all DCs, called the
execution epoch (EE), and the local epoch counter in the
coordinator, called the coordinator epoch (CE). The CEs are
synchronized using the Network Timing Protocol (NTP). The
EEs are deterministically calculated using the receipt epoch
of transactions plus the estimated inter-DC transmission delay.
If epoch messages are delayed during transmission, then the
execution epoch of the delayed messages will be a past epoch
in the recipient (coordinator). In this case, they are executed
immediately if the time-based delay tolerance is not violated.
In other words, the maximum offset between CE and EE is the
delay tolerance, beyond which epoch messages are abandoned.
The offset is expected to be dynamic during the operation of
Catenae. The offset increases when the network among DCs
introduces unexpected delays while delivering epoch messages.
The offset decreases when the coordinators skip an execution
epoch, which does not contain transaction distribution payload
from all DCs. In this case, we guarantee that the CEs are
always larger than EEs.

On the other hand, Catenae can be adapted to operate while
receiving only majority epoch messages. Specifically, upon
receiving the majority epoch messages, Catenae proceeds to
transaction scheduling and execution phase. The incomplete
receipt of transactions from DCs will lead to a higher pos-
sibility to have divergent transaction execution dependencies.
The inconsistent execution dependency will be corrected by
the selection of majority execution dependency during the
validation phase with another RTT. Thus, the tradeoff allows
Catenae to operate in a failure-prone environment but with a
significant overhead for catching up inconsistent transaction
executions. The possibility of having inconsistent transaction
executions is evaluated in Section III-B and shown in Figure 1.

499

C. Liveness among Transactions

The transaction chain maintains serializability and liveness
among transactions by ensuring that the dependencies among
transactions are acyclic. A dependency is added to a pair of
transaction by a chain server only when such dependency does
not exist and will not generate cyclic dependency implicitly.
Specifically, a chain server will not add a dependency contra-
dictory to the dependency already embedded in the transaction.
Dependency gradually propagates among chain servers with
the passing of transactions and transactions are order lin-
early by chain servers with their observed dependency. Cyclic
behavior can only happen when chain servers do not have
enough information regarding some concurrent transactions,
as shown in one example in Section VI-C. This kind of cyclic
dependency is prevented by transaction resolver, who adds
implicit dependency to transactions. Implicit dependencies are
added when a superset of cyclic behaviors (as illustrated in
Figure 4) are detected.

IX. CONCLUSION

We present Catenae, a geo-distributed transaction frame-
work. It leverages novel epoch boundary synchronization pro-
tocol among DCs to improve transaction commit latency and
extends the transactions chain algorithm to efficiently schedule
and execute transactions in multiple DCs. We show that Cate-
nae only needs one single inter-DC communication delay to
execute non-conflicting geo-distributed read/write transactions
and one RTT to execute potentially conflicting geo-distributed
transactions most of the time. The worst case commit latency
of Catenae requires two RTTs. Catenae achieves more than
twice the throughput than 2PL and OCC with more than 50%
less commit latency under TPC-C workload.

As a future work, we would like to investigate the perfor-
mance of Catenae in a less ideal environment. Specifically, we
would like to quantify the performance drop of Catenae using
VMs that have heterogeneous specifications. The heterogeneity
among VMs can emerge within or across data centers. Further-
more, the network among data centers also plays an essential
role in guaranteeing the performance of Catenae. We would
like to continue this work by evaluating and further improving
its performance under severer network conditions, where epoch
messages can be frequently delayed or lost.

ACKNOWLEDGMENT

This work was supported by the Erasmus Mundus Joint
Doctorate in Distributed Computing funded by the EACEA of
the European Commission under FPA 2012-0030 and the End-
to-End Clouds project funded by the Swedish Foundation for
Strategic Research under the contract RIT10-0043.

REFERENCES

[1] Summary of the amazon ec2 and amazon rds service disruption in the us east
region. http://aws.amazon.com/message/65648/, 2011.

[2] Massive flooding damages several nyc data centers. http://www.
datacenterknowledge.com/archives/2012/10/30/major-flooding-nyc-data-centers/,
2012.

[3] Summary of the december 24, 2012 amazon elb service event in the us-east region.
http://aws.amazon.com/message/680587/, 2012.

[4] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Comput. Surv., 13(2):185–221, June 1981.

[5] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, June 1981.

[6] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi. Minimizing
commit latency of transactions in geo-replicated data stores. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, SIGMOD
’15, pages 1279–1294, New York, NY, USA, 2015. ACM.

[7] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Warp: Lightweight multi-key
transactions for key-value stores. CoRR, abs/1509.07815, 2015.

[8] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
[9] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM Trans.

Database Syst., 31(1):133–160, March 2006.
[10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

[11] Ying Liu and V. Vlassov. Replication in distributed storage systems: State of the art,
possible directions, and open issues. In Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2013 International Conference on, pages 225–232,
Oct 2013.

[12] Beth Trushkowsky, Peter Bodı́k, Armando Fox, Michael J. Franklin, Michael I.
Jordan, and David A. Patterson. The scads director: Scaling a distributed storage
system under stringent performance requirements. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies, FAST’11, pages 12–12,
Berkeley, CA, USA, 2011. USENIX Association.

[13] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3: Cutting
tail latency in cloud data stores via adaptive replica selection. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), pages
513–527, Oakland, CA, May 2015. USENIX Association.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. Spanner: Google’s globally-distributed database.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, Berkeley, CA, USA, 2012. USENIX
Association.

[15] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr
El Abbadi. Low-latency multi-datacenter databases using replicated commit. Proc.
VLDB Endow., 6(9):661–672, July 2013.

[16] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
Mdcc: Multi-data center consistency. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 113–126, New York, NY,
USA, 2013. ACM.

[17] Ying Liu, Xiaxi Li, and V. Vlassov. Globlease: A globally consistent and elastic
storage system using leases. In Parallel and Distributed Systems (ICPADS), 2014
20th IEEE International Conference on, pages 701–709, Dec 2014.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[19] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Gentlerain:
Cheap and scalable causal consistency with physical clocks. In Proceedings of the
ACM Symposium on Cloud Computing, SOCC ’14, pages 4:1–4:13, New York, NY,
USA, 2014. ACM.

[20] Jiaqing Du, S. Elnikety, and W. Zwaenepoel. Clock-si: Snapshot isolation for
partitioned data stores using loosely synchronized clocks. In Reliable Distributed
Systems (SRDS), 2013 IEEE 32nd International Symposium on, pages 173–184,
Sept 2013.

[21] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe: Scalable
causal consistency using dependency matrices and physical clocks. In Proceedings
of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 11:1–11:14,
New York, NY, USA, 2013. ACM.

[22] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. Lazy evaluation of
transactions in database systems. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 15–26,
New York, NY, USA, 2014. ACM.

[23] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and
Jinyang Li. Transaction chains: Achieving serializability with low latency in geo-
distributed storage systems. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 276–291, New York, NY, USA,
2013. ACM.

[24] Cloudping. http://www.cloudping.info/.
[25] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis

Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst.,
30(2):492–528, June 2005.

[26] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. System level
concurrency control for distributed database systems. ACM Trans. Database Syst.,
3(2):178–198, June 1978.

[27] Tpc-c, the order-entry benchmark. http://www.tpc.org/tpcc/.
[28] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured

storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.
[29] Rusty Klophaus. Riak core: Building distributed applications without shared state.

In ACM SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages
14:1–14:1, New York, NY, USA, 2010. ACM.

[30] Cosmin Arad, Tallat M. Shafaat, and Seif Haridi. Cats: A linearizable and self-
organizing key-value store. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 37:1–37:2, New York, NY, USA, 2013. ACM.

[31] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6):205–220, October 2007.

500

