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Abstract—While cluster computing frameworks are contin-
uously evolving to provide real-time data analysis capabilities,
Apache Spark has managed to be at the forefront of big
data analytics for being a unified framework for both, batch
and stream data processing. However, recent studies on micro-
architectural characterization of in-memory data analytics are
limited to only batch processing workloads. We compare the
micro-architectural performance of batch processing and stream
processing workloads in Apache Spark using hardware per-
formance counters on a dual socket server. In our evaluation
experiments, we have found that batch processing and stream
processing has same micro-architectural behavior in Spark if the
difference between two implementations is of micro-batching only.
If the input data rates are small, stream processing workloads
are front-end bound. However, the front end bound stalls are
reduced at larger input data rates and instruction retirement is
improved. Moreover, Spark workloads using DataFrames have
improved instruction retirement over workloads using RDDs.

I. INTRODUCTION

With a deluge in the volume and variety of data collecting,
web enterprises (such as Yahoo, Facebook, and Google) run
big data analytics applications using clusters of commodity
servers. However, it has been recently reported that using
clusters is a case of over-provisioning since most analytics jobs
do not process really huge data sets and those modern scale-
up servers are adequate to run analytics jobs [1]. Additionally,
commonly used predictive analytics such as machine learning
algorithms, work on filtered datasets that easily fit into the
memory of modern scale-up servers. Moreover, the today’s
scale-up servers can have CPU, memory, and persistent storage
resources in abundance at affordable prices. Thus we envision
the small cluster of scale-up servers will be the preferable
choice of enterprises in near future.

While Phoenix [2], Ostrich [3] and Polymer [4] are specif-
ically designed to exploit the potential of a single scale-up
server, they do not scale-out to multiple scale-up servers.
Apache Spark [5] is getting popular in the industry because
it enables in-memory processing, scales out to many of com-
modity machines and provides a unified framework for batch
and stream processing of big data workloads. However, its per-
formance on modern scale-up servers is not fully understood.
Recent studies [6], [7] characterize the micro-architectural
performance of in-memory data analytics with Spark on a
scale-up server but they cover only batch processing workloads

and they also do not quantify the impact of data velocity
on the micro-architectural performance of Spark workloads.
Knowing the limitations of modern scale-up servers for real-
time streaming data analytics with Spark will help in achieving
the future goal of improving the performance of real-time
streaming data analytics with Spark on small clusters of scale-
up servers.

Our contributions are:

• We characterize the micro-architectural performance
of Spark-core, Spark MLlib, Spark SQL, GraphX and
Spark Streaming.

• We quantify the impact of data velocity on the micro-
architectural performance of Spark Streaming.

The rest of this paper is organized as follows. Firstly, we
provide background and formulate the hypothesis in section
2. Secondly, we discuss the experimental setup in section 3,
examine the results in section 4 and discuss the related work
in section 5. Finally, we summarize the findings and give
recommendations in section 6.

II. BACKGROUND

A. Spark

Spark is a cluster computing framework that uses Resilient
Distributed Datasets (RDDs) [5] which are immutable collec-
tions of objects spread across a cluster. Spark programming
model is based on higher-order functions that execute user-
defined functions in parallel. These higher-order functions are
of two types: “Transformations” and “Actions”. Transforma-
tions are lazy operators that create new RDDs, whereas Actions
launch a computation on RDDs and generate an output. When
a user runs an action on an RDD, Spark first builds a DAG of
stages from the RDD lineage graph. Next, it splits the DAG
into stages that contain pipelined transformations with narrow
dependencies. Further, it divides each stage into tasks, where
a task is a combination of data and computation. Tasks are
assigned to executor pool of threads. Spark executes all tasks
within a stage before moving on to the next stage. Finally, once
all jobs are completed, the results are saved to file systems.

B. Spark MLlib

Spark MLlib [8] is a machine learning library on top of
Spark-core. It contains commonly used algorithms related to
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collaborative filtering, clustering, regression, classification and
dimensionality reduction.

C. Graph X

GraphX [9] enables graph-parallel computation in Spark.
It includes a collection of graph algorithms. It introduces a
new Graph abstraction: a directed multi-graph with properties
attached to each vertex and edge. It also exposes a set of
fundamental operators (e.g., aggregateMessages, joinVertices,
and subgraph) and optimized variant of the Pregel API to
support graph computation.

D. Spark SQL

Spark SQL [10] is a Spark module for structured data
processing. It provides Spark with additional information about
the structure of both the data and the computation being
performed. This extra information is used to perform extra
optimizations. It also provides SQL API, the DataFrames API,
and the Datasets API. When computing a result the same
execution engine is used, independent of which API/language
is used to express the computation.

E. Spark Streaming

Spark Streaming [11] is an extension of the core Spark
API for the processing of data streams. It provides a high-
level abstraction called discretized stream or DStream, which
represents a continuous stream of data. Internally, a DStream
is represented as a sequence of RDDs. Spark streaming can
receive input data streams from sources such as Kafka, Twitter,
or TCP sockets. It then divides the data into batches, which
are then processed by the Spark engine to generate the final
stream of results in batches. Finally, the results can be pushed
out to file systems, databases or live dashboards.

F. Garbage Collection

Spark runs as a Java process on a Java Virtual Ma-
chine(JVM). The JVM has a heap space which is divided into
young and old generations. The young generation keeps short-
lived objects while the old generation holds objects with longer
lifetimes. The young generation is further divided into eden,
survivor1 and survivor2 spaces. When the eden space is full,
a minor garbage collection (GC) is run on the eden space and
objects that are alive from eden and survivor1 are copied to
survivor2. The survivor regions are then swapped. If an object
is old enough or survivor2 is full, it is moved to the old space.
Finally when the old space is close to full, a full GC operation
is invoked.

G. Spark on Modern Scale-up Servers

Our recent efforts on identifying the bottlenecks in
Spark [6], [7] on Ivy Bridge machine shows that (i) Spark
workloads exhibit poor multi-core scalability due to thread
level load imbalance and work-time inflation, which is caused
by frequent data access to DRAM and (ii) the performance
of Spark workloads deteriorates severely as we enlarge the
input data size due to significant garbage collection overhead.
However, the scope of work is limited to batch processing
workloads only, assuming that Spark streaming would have

same micro-architectural bottlenecks. We revisit this assump-
tion in this paper.

In this paper, we answer the following questions concerning
real-time streaming data analytics running on modern scale-up
servers using Apache Spark as a case study. Apache Spark
defines the state of the art in big data analytics platforms
exploiting data-flow and in-memory computing.

• Does micro-architectural performance remain consis-
tent across batch and stream processing data analytics?

• How does data velocity affect the micro-architectural
behavior of stream processing data analytics?

III. METHODOLOGY

Our study of micro-architectural characterization of real-
time streaming data analytics is based on an empirical study
of performance of batch and stream processing with Spark
using representative benchmark workloads.

A. Workloads

This study uses batch processing and stream processing
workloads, described in Table I and Table II respectively.
Benchmarking big data analytics is an open research area,
we, however, choose the workloads carefully. Batch pro-
cessing workloads are the subset of BigdataBench [12] and
HiBench [13], which are highly referenced benchmark suites
in the big data domain. Stream processing workloads used in
the paper are the superset of StreamBench [14] and also cover
the solution patterns for real-time streaming analytics [15].

The source codes for Word Count, Grep, Sort, and Naive-
Bayes are taken from BigDataBench [12], whereas the source
codes for K-Means, Gaussian, and Sparse NaiveBayes are
taken from Spark MLlib examples available along with Spark
distribution. Likewise, the source codes for stream processing
workloads are also available from Spark Streaming examples.
Big Data Generator Suite (BDGS), an open source tool is used
to generate synthetic data sets based on raw data sets [16].

B. System Configuration

Table IV shows details about our test machine. Hyper-
Threading and Turbo-boost are disabled through BIOS as
per Intel Vtune guidelines to tune software on the Intel
Xeon processor E5/E7 v2 family [17]. With Hyper-Threading
and Turbo-boost disabled, there are 24 cores in the system
operating at the frequency of 2.7 GHz.

Table V lists the parameters of JVM and Spark after tuning.
For our experiments, we configure Spark in local mode in
which driver and executor run inside a single JVM. We use
HotSpot JDK version 7u71 configured in server mode (64
bit). The Hotspot JDK provides several parallel/concurrent
GCs out of which we use Parallel Scavenge (PS) and Parallel
Mark Sweep for young and old generations respectively as
recommended in [7]. The heap size is chosen such that the
memory consumed is within the system. The details on Spark
internal parameters are available [18].
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TABLE I: Batch Processing Workloads

Spark
Library

Workload Description
Input

data-sets

Spark Core

Word Count

(Wc)
counts the number of occurrence of each word in a text file Wikipedia

Entries

Grep (Gp)
searches for the keyword “The” in a text file and filters out the

lines with matching strings to the output file

Sort (So) ranks records by their key
Numerical

Records

NaiveBayes

(Nb)
runs sentiment classification

Amazon Movie

Reviews

Spark MLlib

K-Means

(Km)

uses K-Means clustering algorithm from Spark MLlib.

The benchmark is run for 4 iterations with 8 desired clusters

Numerical

Records

Sparse

NaiveBayes

(Snb)

uses NaiveBayes classification algorithm from Spark MLlib

Support Vector

Machines (Svm)
uses SVM classification algorithm from Spark MLlib

Logistic

Regression (Logr)
uses Logistic Regression algorithm from Spark MLlib

Graph X

Page Rank (Pr)
measures the importance of each vertex in a graph.

The benchmark is run for 20 iterations
Live

Journal

Graph
Connected

Components (Cc)

labels each connected component of the graph with the

ID of its lowest-numbered vertex

Triangles (Tr)
determines the number of triangles passing through

each vertex

Spark

SQL

Aggregation

(SqlAg)

implements aggregation query from BigdataBench

using DataFrame API Tables

Join (SqlJo)
implements join query from BigdataBench

using DataFrame API

C. Measurement Tools and Techniques

We use Intel Vtune Amplifier [19] to perform general
micro-architecture exploration and to collect hardware perfor-
mance counters. All measurement data are the average of three
measure runs; Before each run, the buffer cache is cleared to
avoid variation in the execution time of benchmarks. Through
concurrency analysis in Intel Vtune, we find that executor
pool threads in Spark start taking CPU time after 10 seconds.
Hence, hardware performance counter values are collected
after the ramp-up period of 10 seconds. For batch processing
workloads, the measurements are taken for the entire run
of the applications and for stream processing workloads, the
measurements are taken for 180 seconds as the sliding interval
and duration of windows in streaming workloads considered
are much less than 180 seconds.

We use top-down analysis method proposed by Yasin [20]
to study the micro-architectural performance of the workloads.
Earlier studies on profiling of big data workloads show the
efficacy of this method in identifying the micro-architectural
bottlenecks [6], [21], [22]. Super-scalar processors can be
conceptually divided into the “front-end” where instructions
are fetched and decoded into constituent operations, and the
“back-end” where the required computation is performed. A
pipeline slot represents the hardware resources needed to
process one micro-operation. The top-down method assumes
that for each CPU core, there are four pipeline slots available
per clock cycle. At issue point, each pipeline slot is classified
into one of four base categories: Front-end Bound, Back-end
Bound, Bad Speculation and Retiring. If a micro-operation is
issued in a given cycle, it would eventually either get retired
or canceled. Thus it can be attributed to either Retiring or
Bad Speculation respectively. Pipeline slots that could not be
filled with micro-operations due to problems in the front-end
are attributed to Front-end Bound category whereas pipeline
slot where no micro-operations are delivered due to a lack of
required resources for accepting more micro-operations in the
back-end of the pipeline are identified as Back-end Bound.

TABLE II: Stream Processing Workloads

Workload Description
Input
data
stream

Streaming

Kmeans (Skm)

uses streaming version of K-Means clustering algorithm

from Spark MLlib. Numerical

RecordsStreaming

Linear

Regression

(Slir)

uses streaming version of Linear Regression algorithm

from Spark MLlib.

Streaming

Logistic

Regression

(Slogr)

uses streaming version of Logistic Regression algorithm

from Spark MLlib.

Network

Word Count

(NWc)

counts the number of words in text received from a

data server listening on a TCP socket every 2 sec and

print the counts on the screen. A data server is created

by running Netcat (a networking utility in Unix systems

for creating TCP/UDP connections)
Wikipe-

dia data
Network

Grep (Gp)

counts how many lines have the word “the” in them every

sec and prints the counts on the screen.

Windowed

Word Count

(WWc)

generates every 10 seconds, word counts over the last

30 sec of data received on a TCP socket every 2 sec.

Stateful Word

Count (StWc)

counts words cumulatively in text received from the net-

work every sec starting with initial value of word count.

Sql Word

Count (SqWc)

uses DataFrames and SQL to count words in text recei-

ved from the network every 2 sec.

Click stream

Error Rate

Per Zip Code

(CErpz)

returns the rate of error pages (a non 200 status) in each

zipcode over the last 30 sec. A page view generator gen-

erates streaming events over the network to simulate

page views per second on a website. Click

streamsClick stream

Page Counts

(CPc)

counts views per URL seen in each batch.

Click stream

Active User

Count (CAuc)

returns number of unique users in last 15 sec

Click stream

Popular User

Seen (CPus)

look for users in the existing dataset and print it

out if there is a match

Click stream

Sliding Page

Counts (CSpc)

counts page views per URL in the last 10 sec

Twitter

Popular Tags

(TPt)

calculates popular hashtags (topics) over sliding 10 and

60 sec windows from a Twitter stream. Twitter

Stream
Twitter

Count Min

Sketch (TCms)

uses the Count-Min Sketch, from Twitter’s Algebird

library, to compute windowed and global Top-K

estimates of user IDs occurring in a Twitter stream

Twitter

Hyper

Log Log (THll)

uses HyperLogLog algorithm, from Twitter’s Algebird

library, to compute a windowed and global estimate

of the unique user IDs occurring in a Twitter stream.

The top-down method requires the metrics described in
Table VI, whose definition are taken from Intel Vtune on-line
help [19].

IV. EVALUATION

A. Does micro-architectural performance remain consistent
across batch and stream processing data analytics?

As stream processing is micro-batch processing in Spark,
we hypothesize batch processing and stream processing to
exhibit same micro-architectural behavior. Figure 1a shows the
IPC values of batch processing workloads range between 1.78
to 0.76, whereas IPC values of stream processing workloads
also range between 1.85 to 0.71. The IPC values of word
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TABLE III: Converted Spark Operations in Workloads

Workload Converted Spark Operation
Wc Map, ReduceByKey, SaveAsTextFile

Gp Filter, SaveAsTextFile

So Map, SortByKey, SaveAsTextFile

Nb Map, Collect, SaveAsTextFile

Snb Map, RandomSplit, Filter, CombineByKey

Km Map, MapPartitions, MapPartitionsWithIndex, FlatMap,Zip, Sample, ReduceByKey,

Svm Map, MapPartitions, MapPartionswithIndex, Zip, Sample,

RandomSplit,Filter,MakeRDD,Union, TreeAggregate, CombineByKey, SortByKeyLogr

Pr

Coalesce, MapPartitionswithIndex, MapPartitions, Map, PartitionBy, ZipPartitionsCc

Tr

SqlAgg
Map, MapPartitions, TungstenProject, TungstenExchange, TungstenAggregate,

ConvertToSafe

SqlJo
Map, MapPartitions, SortMergeJoin, TungstenProject, TungstenExchange,

TungstenSort, ConverToSafe

SqWc FlatMap, ForeachRDD, TungstenExchange, TungstenAggregate, ConvertToSafe

NWc FlatMap, Map, ReduceByKey

NGp Filter, Count

WWc FlatMap, Map, ReduceByKeyAndWindow

StWc FlatMap, Map, UpdateStateByKey

CErPz FlatMap, Map, Window, GroupByKey

CAuc FlatMap, Map, Window, GroupByKey, Count

CPus FlatMap, Map, Parallelize, ForeachRDD

CPc FlatMap, Map, CountByValue

CSPc FlatMap, Map, CountByValueAndWindow

Tpt FlatMap, Map, ReduceByKeyAndWindow, Transform

Tcms Map, MapPartitions, Reduce, ForeachRDD, ReduceByKey,

Thll Map, MapPartitions, Reduce

TABLE IV: Machine Details.

Component Details
Processor Intel Xeon E5-2697 V2, Ivy Bridge micro-architecture

Cores 12 @ 2.7GHz (Turbo up 3.5GHz)

Threads
2 per Core (when Hyper-Threading

is enabled)

Sockets 2

L1 Cache
32 KB for Instruction and

32 KB for Data per Core

L2 Cache 256 KB per core

L3 Cache (LLC) 30MB per Socket

Memory
2 x 32GB, 4 DDR3 channels, Max BW 60GB/s

per Socket

OS Linux Kernel Version 2.6.32

JVM Oracle Hotspot JDK 7u71

Spark Version 1.5.0

count (Wc) and grep (Gp) are very close to their stream
processing equivalents, i.e. network word count (NWc) and
network grep (NGp). Likewise, the pipeline slots breakdown
in Figure 1b for the same workloads are quite similar. This
implies that batch processing and stream processing will have
same micro-architectural behavior if the difference between
two implementations is of micro-batching only.

Sql Word Count(SqWc), which uses the Dataframes has
better IPC than both word count (Wc) and network word
count (NWc), which use RDDs. Aggregation (SqlAg) and
Join (SqlAg) queries which also use DataFrame API have
IPC values higher than most of the workloads using RDDs.
One can see the similar pattern for retiring slots fraction in
Figure 1b. Sql Word Count (SqWc) exhibits 25.56% less back-

TABLE V: Spark and JVM Parameters for Different Workloads.

Parameters

Batch
Processing
Workloads

Stream
Processing
WorkloadsSpark-Core,

Spark-SQL
Spark MLlib,

Graph X
spark.storage.memoryFraction 0.1 0.6 0.4

spark.shuffle.memoryFraction 0.7 0.4 0.6

spark.shuffle.consolidateFiles true

spark.shuffle.compress true

spark.shuffle.spill true

spark.shuffle.spill.compress true

spark.rdd.compress true

spark.broadcast.compress true

Heap Size (GB) 50

Old Generation Garbage Collector PS Mark Sweep

Young Generation Garbage Collector PS Scavenge

TABLE VI: Metrics for Top-Down Analysis of Workloads

Metrics Description

IPC
average number of retired instructions

per clock cycle

DRAM Bound
how often CPU was stalled on the main

memory

L1 Bound
how often machine was stalled without

missing the L1 data cache

L2 Bound
how often machine was stalled on L2

cache

L3 Bound
how often CPU was stalled on L3 cache,

or contended with a sibling Core

Store Bound
how often CPU was stalled on store

operations

Front-End Bandwidth
fraction of slots during which CPU was

stalled due to front-end bandwidth issues

Front-End Latency
fraction of slots during which CPU was

stalled due to front-end latency issues

ICache Miss Impact
fraction of cycles spent on handling

instruction cache misses

Cycles of 0 ports Utilized
the number of cycles during which

no port was utilized.

end bound slots than streaming network word count (NWc)
because sql word count (SqWc) shows 64% less DRAM bound
stalled cycles than network word count (NWc) and hence
consumes 25.65% less memory bandwidth than network word
count (NWc). Moreover, the execution units inside the core
are less starved in sql word count as the fraction of clock
cycles during which no ports are utilized, is 5.23% less than in
network wordcount. The difference in performance is because
RDDs use Java objects based row representation, which have
high space overhead whereas DataFrames use new Unsafe
Row format where rows are always 8-byte word aligned (size
is multiple of 8 bytes) and equality comparison and hashing
are performed on raw bytes without additional interpretation.
This implies that Dataframes have the potential to improve the
micro-architectural performance of Spark workloads.

The DAG of both windowed word count (Wwc) and twitter
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popular tags (Tpt) consists of “map” and “reduceByKeyAnd-
Window” transformations (see Table III) but the breakdown
of pipeline slots in both workloads differ a lot. The back-end
bound fraction in windowed word count (Wwc) is 2.44x larger
and front-end bound fraction is 3.65x smaller than those in
twitter popular tags (Tpt). The DRAM bound stalled cycles
in windowed word count (Wwc) are 4.38x larger and L3
bound stalled cycles are 3.26x smaller than those in twitter
popular tags (Tpt). The fraction of cycles during which 0 port
is utilized, however, differ only by 2.94%. Icache miss impact
is 13.2x larger in twitter popular tags (Tpt) than in windowed
word count (Wwc). The input data rate in windowed word
count (Wwc) is 10,000 events/s whereas in twitter popular
tags (Tpt), it is 10 events/s. Since the sampling interval is 2s,
the working set of a windowing operation in windowed word
count (Wwc) with 30s window length is 15 x 10,000 events
where the working set of a windowing operation in twitter
popular tags (Tpt) with 60s window length is 30 x 10 events.
The working set in windowed word count (Wwc) is 500x larger
than that in twitter popular tags (Tpt), The 30 MB last level
cache is sufficient enough for the working set of Tpt but not
for windowed word count (Wwc). That’s why windowed word
count (Wwc) also consumes 24x more bandwidth than twitter
popular tags (Tpt).

Click stream sliding page count (CSpc) also uses similar
“map” and “countByValueAndWindow” transformations (see
Table III) and the input data rate is also the same as in
windowed word count (Wwc) but the back-end bound fraction
and DRAM bound stalls are smaller in click stream sliding
page count (CSpc) than in windowed word count (Wwc).
Again the working set in Click stream sliding page count
(CSpc) with 10s window length is 5 x 10,000 events which
three times less than the working set in windowed word count
(Wwc).

CErpz and CAuc both use “window”, “map” and “group-
byKey” transformations (see Table III) but the front-end bound
fraction and icache miss impact in CAuc is larger than in
CErpz. However, back-end bound fraction, DRAM bound
stalled cycles, memory bandwidth consumption are larger in
CErpz than in CAuC. The retiring fraction is almost same in
both workloads. The difference is again the working set. The
working set in CErpz with the window length of 30 seconds
is 15 x 10,000 events which are 3x larger than in CAuc with
the window length of 10 seconds. This implies that with larger
working sets, Icache miss impact can be reduced.

B. How does data velocity affect micro-architectural perfor-
mance of in-memory data analytics with Spark?

In order to answer the question, we compare the micro-
architectural characteristics of stream processing workloads
at input data rates of 10, 100, 1000 and 10,000 events per
second. Figure 2a shows that CPU utilization increases only
modestly up to 1000 events/s after which it increases up to
20%. Likewise IPC in figure 2b increases by 42% in CSpc
and 83% in CAuc when input rate is increased from 10 to
10,000 events per second.

The pipeline slots breakdown in Figure 2c shows that when
the input data rates are increased from 10 to 10,000 events/s,
fraction of pipeline slots being retired increases by 14.9% in

CAuc and 8.1% in CSpc because in CAuc, the fraction of
front-end bound slots and bad speculation slots decrease by
9.3% and 8.1% respectively and the back-end bound slots
increase by only 2.5%, whereas in CSpc, the fraction of front-
end bound slots and bad speculation slots decrease by 0.4%
and 7.4% respectively and the back-end bound slots increase
by only 0.4%. The memory subsystem stalls break down in
Figure 2d show that L1 bound stalls increase, L3 bound stalls
decrease and DRAM bound stalls increase at high data input
rate, e.g in CErpz, L3 bound stalls and DRAM bound stalls
remain roughly constant at 10, 100 and 1000 events/s because
the working sets are still not large enough to create an impact
but at 10,000 events/s, the working sets does not fit into the
last level cache and thus DRAM bound stalls increase by
approximately 20% while the L3 bound stalls decrease by
the same amount. This is also evident from Figure 2f, where
the memory bandwidth consumption is constant at 10, 100
and 1000 events/s and then increases significantly at 10,000
events/s. Larger working sets translate into better utilization of
functional units as the number of clock cycles during which
no ports are utilized decrease at higher input data rates. Hence
input data rates should be high enough to provide working sets
large enough to keep the execution units busy.

V. RELATED WORK

Several studies characterize the behaviour of big data
workloads and identify the mismatch between the processor
and the big data applications [12], [21], [23]–[27]. Ferdman
et al. [23] show that scale-out workloads suffer from high
instruction cache miss rates. Large LLC does not improve
performance and off-chip bandwidth requirements of scale-
out workloads are low. Zheng et al. [28] infer that stalls due
to kernel instruction execution greatly influence the front end
efficiency. However, data analysis workloads have higher IPC
than scale-out workloads [24]. They also suffer from notable
front-end stalls but L2 and L3 caches are effective for them.
Wang et al. [12] conclude the same about L3 caches and L1
I-Cache miss rates despite using larger data sets. Deep dive
analysis [21] reveal that big data analysis workload is bound
on memory latency but the conclusion can not be generalized.
None of the above-mentioned works consider frameworks that
enable in-memory computing of data analysis workloads.

Ruirui et-al [14] have compared throughput, latency, data
reception capability and performance penalty under a node
failure of Apache Spark with Apache Storm. Miyuru et-al [29]
have compared the performance of five streaming applications
on System S and S4. Jagmon et-al [30] have analyzed the
performance of S4 in terms of scalability, lost events, resource
usage, and fault tolerance. Our work analyzes the micro-
architectural performance of Spark Streaming.

VI. CONCLUSION

We have reported a deep dive analysis of in-memory data
analytics with Spark on a large scale-up server.

The key insights we have found are as follows:

• Batch processing and stream processing has same
micro-architectural behavior in Spark if the difference
between two implementations is of micro-batching
only.
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(a) IPC values of stream processing workloads lie in the same range as of batch
processing workloads

(b) Majority of stream processing workloads are back-end bound as that of
batch processing workloads

(c) Stream processing workloads are also DRAM bound but their fraction of
DRAM bound stalled cycles is lower than that of batch processing workloads

(d) Memory bandwidth consumption of machine learning based batch
processing workloads is higher than other Spark workloads

(e) Execution units starve both in batch in stream processing workloads (f) ICache miss impact in majority of stream processing workloads is similar to
batch processing workloads

Fig. 1: Comparison of micro-architectural characteristics of batch and stream processing workloads

• Spark workloads using DataFrames have improved
instruction retirement over workloads using RDDs.

• If the input data rates are small, stream processing
workloads are front-end bound. However, the front end
bound stalls are reduced at larger input data rates and
instruction retirement is improved.

We recommend Spark users to prefer DataFrames over
RDDs while developing Spark applications. Computer archi-
tects rely heavily on cycle accurate simulators to evaluate novel
designs for processor and memory. Since simulators are quite
slow, computer architects tend to prefer smaller input data sets.
Due to large inconsistencies in the micro-architectural behavior
with data velocity, computer architects need to simulate their
proposals for stream processing workloads at large input data
rates.
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