
Profiling Memory Vulnerability
of Big-data Applications

N. Rameshan∗†, R. Birke‡, L. Navarro∗, V. Vlassov†, B. Urgaonkar§, G. Kesidis§, M. Schmatz‡, and L. Y. Chen‡
∗Universitat Politècnica de Catalunya, Barcelona, Spain, Email: {rameshan,leandro}@ac.upc.edu
†KTH Royal Institute of Technology, Stockholm, Sweden, Email: {rameshan,vladv}@kth.se
‡IBM Research Zurich Lab, Rüschlikon, Switzerland, Email: {bir,mrt,yic}@zurich.ibm.com

§Pennsylvania State University, PA, USA, Email: {bhuvan,gik2}@cse.psu.edu

Abstract—Motivated by the increasing popularity of
hosting in-memory big-data analytics in cloud, we present
a profiling methodology that can understand how different
memory subsystems, i.e., cache and memory bandwidth,
are susceptible to the impact of interference from co-located
applications. We first describe the design of the proposed
tool and demonstrate a case study consisting of five Spark
applications on real-life data set.

I. INTRODUCTION

In-memory big-data analytics, such as Spark and
Flink, have been widely adopted to process large
amounts of data and to derive operational insights
for the society and business. While they are typically
hosted in a private environment, i.e., not co-located with
other applications, the recent trend is to migrate big-
data applications on cloud, leveraging the advantage of
resource elasticity. The challenges raised immediately
are how to ensure the performance dependability for
big-data analytics in the cloud, especially given the
existence of the notorious stragglers whose execution
times are significantly longer than the other tasks. Due
to sharing the underlying memory subsystem, e.g., cache
and memory bandwidth, with co-located applications, the
performance of big-data analytics can be highly volatile
and mitigating their performance anomalies in cloud
becomes further exacerbated. Profiling is the first step
towards understanding performance variations, which in
turn aids in enhancing the dependability.

It is long deemed challenging to understand the ap-
plications’ sensitiveness particularly to memory interfer-
ences, due to the intricate dependency on cache, memory
capacity and bandwidth. Profiling the applications [1],
[2], [3] in an isolated and emulated environment, i.e.,
creating interference on certain components, can gain
a good understanding of applications’ characteristics of
different memory subsystem and their adaptability to
different levels of interference. Due to the distributed
nature of big-data analytics, the degree of performance
degradation highly depends on the intensity as well as the
distribution of interference. It is important to consider the
data and task distribution together with different interfer-
ence patterns when analyzing the memory vulnerability
of big-data applications.

It is known that modern big-data analytics not only
have a large number of tuning parameters but also a

daunting number of performance metrics, due to its
distributed nature. To correlate the interference with
job performance, one needs to analyze the numerous
metrics collected from the application as well as the
underlying system. Take an example of analyzing the
execution of k-means on a Spark cluster. The application
latency is determined by the execution of numerous
tasks over multiple stages, which can be further de-
composed into scheduling, fetching, garbage collection
and execution time. From each of the servers, one
needs to collect application metrics and low-level metrics
related to memory subsystem, e.g., last level cache
misses, bandwidth usages, prefetches, etc to gain any
understanding of interference. Though big-data analytics
provides an interface to collect application metrics, there
is a lack of tools that can aggregate metrics collected
from distributed tasks and servers and provide insightful
analysis on the memory sensitivity.

In this paper, we aim to provide an integrated solution
to understand how robust or susceptible those business
critical big-data applications are to potential memory
interference in the cloud. We envision our analysis to
serve as an oracle to guide the configuration of big data
applications and the choices of hosting platforms, prior
migrating to the wild cloud. To this end, we develop a
tool chain that can: (i) emulate interference on different
parts of the memory sub-system, i.e., memory band-
width, cache, and both, including a set of tunable pa-
rameters on interference intensity, type and distribution
along with configuration tuning of Spark; (ii) integrate
metrics collection from both the distributed application
and server; and (iii) correlate interference and latency
degradation via a top-down analysis.

We present preliminary and small-scale results on
applying such a tool chain on analyzing five Spark
applications, namely, word count, k-means, naive Bayes,
decision tree and triangle count. Our testbed is a small
cluster consisting of three physical servers. We col-
lect the performance degradation of these applications,
in combination with different kinds, intensities, and
distributions of interference. Our preliminary findings
based on these five applications are: (i) the application
performance indeed is degraded, but not to a great
extent, i.e., roughly 25-35%, except triangle count which
suffers a degradation of about 150%; (ii) these Spark

2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/DSN-W.2016.58

259

2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

978-1-5090-3688-2/16 $31.00 © 2016 IEEE

DOI 10.1109/DSN-W.2016.58

258

(a) C’s data is remote, hence S contends with
C’s only for L3 cache (config-a)

(b) C runs on a different processor, hence
S contends with C’s only for memory band-
width (config-b)

(c) S and C share both memory bandwidth
and L3 cache and hence contend for both
(config-c)

Fig. 1: Configurations for generating contention at different resources. S denotes the Spark application and M(S)

denotes the memory allocation of S. C denotes the co-runners and M(C) denotes the memory allocation of C.

I denotes the core serving interrupts.

applications are more sensitive to cache interference than
memory bandwidth; (iii) the Spark scheduler is adaptive
to interference, to a certain extent; (iv) performance in-
terference exaggerates the role of garbage collection and
shuffling causing significant performance degradations;
(v) smaller data partitions enhance the resistance against
memory-related interference; and (vi) data locality does
not play a major role in the presence of performance
interference.

In the following, we give an overview on memory
interference profiling in Section II, top-down sensitivity
analysis in Section III, and a case study on the five Spark
applications in Section IV.

II. PROFILING MEMORY SUBSYSTEM

INTERFERENCES

In this section, we detail how to inject a particular
pattern of memory sub-system interference by using co-
located applications, termed co-runners, and techniques
to collect statistics of interests. As our focus here is to
understand how big-data application react to different
co-located applications, we need to collect performance
counters of the Spark application as well as the co-
runners.

We ensure CPU isolation by co-running Spark with
other applications on different cores of the same physical
host. We denote the Spark application by S and each
co-runner by C. In our experiments, we compute the
performance degradation D as the relative increase in
total execution time of Spark running in isolation Ti and
with co-runners Tc, i.e.: D = Tc−Ti

Ti
.

A. Emulating interferences on memory subsystems
Performance interference at the memory subsystem

manifests when there is contention for any of the shared
resources such as cache or memory bandwidth. An appli-
cation sensitivity to contention is primarily determined
by how much an application progress benefits from its
reliance on a particular shared resource. For example,
an application heavily benefiting from cache will suffer
a high degradation when there is contention for cache
from co-runners, and the application is said to be highly
sensitive to cache interference.

In order to perform an accurate analysis of Sparks’
sensitivity to different shared memory resources, it be-
comes imperative to stress the shared resources indi-
vidually with different intensities. It is challenging to
design micro-benchmarks that stress the shared memory

resources individually. For example, designing a micro-
benchmark to stress the memory bandwidth in isolation
requires careful consideration since the requests to mem-
ory pass through the cache and can inherently impact
the cache. We circumvent this problem by relying on
NUMA machines with placement strategies designed to
individually stress different memory subsystems. We use
three system configurations as illustrated in Figure 1.
They are designed to generate contention at different
resources individually. The first configuration generates
contention only on the cache, the second only on mem-
ory bandwidth and the third on both.

B. Co-profiling
The goal of stressing different memory subsystems is

to understand the sensitivity of different Spark applica-
tions to contention at these subsystems. However, we are
also interested in understanding the low level properties
of both the Spark application and the co-runners that
determine this sensitivity. We use performance monitor-
ing units (PMU) to approximate this behaviour. PMUs
are special registers in modern CPUs which collect
low level hardware statistics of an application without
any additional overhead. PMUs can only hold context
either for a single process or multiple cores at a time.
We circumvent this limitation by monitoring the Spark
application and the co-runners in turns throughout the
lifetime of the application execution. We also monitor
the Spark application running in isolation in order to
comparatively study the changes in the statistics under
contention.

III. SENSITIVITY ANALYSIS

In this section, we provide the list of metrics collected
from the application and memory-subsystems. Due to the
space limit, we only highlight the critical ones.

A. Application level
Spark provides a myriad of tuning parameters that

can affect the application performance in ways that are
often not obvious. An application life-cycle is typi-
cally composed of multiple jobs and stages, with each
stage comprising multiple tasks. Task execution time
can be further broken down into multiple phases: shuf-
fle, garbage collection, computation and serialization/de-
serialization. From the memory interference point of
view, we are particularly interested in understanding
how an application life-cycle is affected by interference

260259

and which part of the task execution is most impacted
by interference. By knowing which execution phase is
most impacted by interference, it is possible to tune the
application to optimise the time spent on that phase
and consequently mitigate the detrimental effects of
interference. It also provides an overall understanding
of how robust and flexible Spark is to interference.

To facilitate this, our tool decomposes an application
life-cycle into multiple stages and aggregates informa-
tion such as: average and maximum task execution time,
stage completion time, and total number of tasks per
host. The total number of tasks scheduled per host
provides an insight into how Spark inherently deals with
interference. Apart from aggregating stage information
per host, the tool decomposes task execution time into
phases and provides a comparative plot with and without
interference to identify phases most impacted by interfer-
ence. A key idea behind Spark is to enhance data locality
by moving tasks to hosts where the data is located.
In order to investigate what happens when hosts with
local data are heavily interfered, our tool also gathers
information on data locality of tasks.

B. Low level

The specific performance counters the tool mon-
itors include: instructions, cycles, cache-references,
cache-misses, LLC-prefetches, LLC-prefetch-misses and
DTLB misses. They help understand both contentious-
ness of the co-running application and the sensitivity of
the Spark application. For example, an application sen-
sitive to cache contention will experience higher cache-
misses when compared to its execution in isolation.
Similarly, these counters when monitored for the co-
runner help determine what properties of the co-runner
create more contention on the memory subsystem. A
co-runner with high cache-references is expected to be
intensive on the cache. Once studied and validated, they
can help schedule Spark applications and co-runners to
be aware of performance interference.

C. Experiment Setup

All our experiments were conducted on our private
cluster composed of three hosts each equipped with two
Intel Xeon CPUs @ 3.00 GHz and 42GB of memory
running Ubuntu 14.04. Each CPU has a 12 MB L3
cache and 12 hardware threads. We disable frequency
scaling and pin Spark and the co-runners to physical
cores to guarantee CPU isolation. Table I provides a
summary of the applications and data sets used. We
study representative workloads from machine learning,
clustering and graph processing. The tool varies the data-
locality, partition size, intensity of interference and the
distribution of interference. Unless explicitly mentioned
otherwise, the input data is replicated on all the hosts.
Our analysis is preliminary, at a small scale and mainly
serves as an indicator to demonstrate the capabilities of
the tool.

TABLE I: Spark Applications

Benchmark Category Dataset Description

Naive

Bayes

Classification KDD Cup

1999 [4]

5M network

records

Decision

Tree

Classification KDD Cup

1999 [4]

5M network

records

KMeans Clustering US Census

1990 [5]

2M

instances

Triangle

Counting

Graph pro-

cessing

Live

Journal [6]

5M nodes,

68M edges

Word

Count

Minimal

processing

Project

Gutenberg [7]

4GB

Fig. 2: Overall performance degradation for different

Spark applications.

IV. CASE STUDY

In this section, we present the preliminary evaluation
results of analyzing the memory vulnerability of big-data
applications.

A. Results

Dominant source of sensitivity: Figure 2 shows
the overall performance degradation for different Spark
applications with interference at different memory sub-
systems on all the hosts. Most of the applications degrade
only by 25-35% except for triangle counting, which
degrades by up to 150%. The results also show that
all the applications are more sensitive to cache than
bandwidth. This observation is consistent with previous
studies [8] that show that Spark workloads use only a
small portion of available memory bandwidth.

Distribution vs. Intensity: Figure 3 shows the per-
formance degradation of triangle counting for varying
intensities (number of co-runners) and distribution of
interference (number of contented hosts). Naturally, the
application degrades the most when both the intensity
and the distribution of interference is highest. However,
we find that even when the distribution of interference is
small, performance degrades significantly. For example:
with high interference on both cache and bandwidth only
on one host, the application degrades by around 65%.

261260

Fig. 3: Heatmap depicting the performance degradation

of triangle counting for different interference intensities

and distributions.

This impact is more prominent for applications that are
highly sensitive to interference.

Application Breakdown: Figure 4a shows the ap-
plication breakdown to stage execution time (we show
only a subset of the data here) for a single host when
running k-means. Of the three hosts used in the cluster,
interference is generated on two hosts host 1 and host 2.
From the figure, we can clearly see that the time taken to
execute a stage increases in the presence of interference.
Figure 4b shows the number of tasks (for a subset of the
data) scheduled on host 1 with and without interference.
In the presence of interference, the total number of tasks
scheduled on host 1 is lower than the total number of
tasks scheduled without interference. Spark schedules
tasks on a host when the previous task on that host
finishes its execution. In the presence of interference, the
already scheduled tasks on the host take longer to finish
their execution because of contention and as a result
more tasks are scheduled on hosts that are not interfered.
This shows that Spark scheduling is inherently adaptive
to interference. Despite having a lower number of tasks,
the overall stage execution time is longer in the presence
of interference. However, the fact that Spark scheduling
adapts to interference compensates for the increase in
stage execution time.

Task Breakdown: Breaking down tasks further into
phases, we observe that applications spending a signif-
icant amount of time in garbage collection or shuffling
are heavily impacted by interference. The time taken
for shuffling data is exacerbated in the presence of
performance interference. Triangle counting is one such
application that spends a significant amount of time in
shuffling data, and consequently suffers greatly from
contention.

Impact of Partition: It is generally recommended to
chunk data into many partitions in order to spread out
the work evenly across cores and achieve low latency
in execution. We observe that tuning spark to have a
high number of partitions also improves the resilience of
the application to performance interference. With many
partitions, data is readily available for Spark to schedule
execution on hosts that have free resources. With few
partitions, non-interfered hosts can have no data to work

with while waiting for interfered hosts working on biggerg

(a) Stage completion time on
host 1

g gg

(b) Total number of tasks sched-
uled on host 1

Fig. 4: Stage completion time and total number of tasks

scheduled on host 1 when running K-means. Host 1

suffers from interference.

chunks of data to finish which results in longer execution
times.

Impact of Data Locality: In order to test the impact
of data locality, we concentrate all input data on a single
host on which we generate high intensity of interference.
Even under such a scenario, the performance of Spark
application is not significantly degraded compared to an
isolated run. We assume that this is because network is
not the bottleneck. Any host can remotely fetch the data
with little overhead even in the presence of interference.

V. CONCLUDING REMARKS

We present a methodology that can asses the vulner-
ability of memory subsystems of big-data applications,
using a case study of five Spark applications. Our pre-
liminary analysis on Spark shows that most applications
tend to be more sensitive to cache than bandwidth
and keeping the partition size small can improve the
resilience to memory interference. As a part of the future
work, we are interested in understanding how latency
critical big-data applications such as real time streaming
fare under performance interference and to see if their
behaviour offers any predictability.

ACKNOWLEDGMENT

This work has been supported by the Swiss National
Science Foundation (project 200021 141002).

REFERENCES

[1] Govindan et.al. Cuanta: quantifying effects of shared on-chip
resource interference for consolidated virtual machines. In Pro-
ceedings of SOCC, pages 22:1–22:14. ACM, 2011.

[2] Tang et.al. Contentiousness vs. sensitivity: improving contention
aware runtime systems on multicore architectures. In Proceedings
of EXADAPT, pages 12–21. ACM, 2011.

[3] Rameshan et.al. Stay-away, protecting sensitive applications from
performance interference. In Proceedings of Middleware, pages
301–312. ACM, 2014.

[4] KDD Cup 1999, Last accessed: March 20, 2016. http://kdd.ics.
uci.edu/databases/kddcup99/kddcup99.html.

[5] US Census 1990, Last accessed: March 20, 2016.
https://archive.ics.uci.edu/ml/machine-learning-databases/
census1990-mld/USCensus1990.html.

[6] Live Journal Dataset, Last accessed: March 20, 2016. https://snap.
stanford.edu/data/soc-LiveJournal1.html.

[7] Project Gutenberg Books, Last accessed: March 20, 2016. https:
//www.gutenberg.org/.

[8] Jiang et.al. Understanding the behavior of in-memory computing
workloads. In Proceedings of IISWC, pages 22–30. IEEE, 2014.

262261

