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Abstract—Elastic resource provisioning is used to guarantee
service level objective (SLO) with reduced cost in a Cloud
platform. However, performance interference in the hosting
platform introduces uncertainty in the performance guarantees
of provisioned services. Existing elasticity controllers are either
unaware of this interference or over-provision resources to meet
the SLO. In this paper, we show that assuming predictable
performance of VMs to build an elasticity controller will fail
if interference is not modelled. We identify and control the
different sources of unpredictability and build Hubbub-Scale; an
elasticity controller that is reliable in the presence of performance
interference. Our evaluation with Redis and Memcached show
that Hubbub-Scale efficiently conforms to the SLO requirements
under scenarios where standard modelling approaches fail.

Keywords—Elasticity, Performance interference, Cloud, Pre-
dictable Performance.

I. INTRODUCTION

Services that are elastically provisioned in the Cloud are
able to use platform resources on demand. Instances can be
spawned to meet the Service Level Objective (SLO) during
periods of increasing workload and removed when workload
drops. Enabling elastic provisioning saves the cost of hosting
services in the Cloud, since Cloud users only pay for the
resources that are used to serve their workload. Virtualization
is a key enabler for elasticity as it ensures operational isolation
for Cloud users and provides management convenience for
Cloud providers. However, it does not provide performance
isolation on many shared resources, such as memory sub-
system. In other words, consolidation of multiple VMs comes
at the price of application slow down and VM performance
interference in ways that cannot be modelled easily. VM
performance interference happens when behavior of one VM
adversely affects the performance of another due to contention
in the use of shared resources in the system such as memory
bandwidth, cache etc. Performance interference is well studied
and works [1], [2] show that it is indeed a real problem in
the cloud and can degrade the performance of an application
significantly.

The already hard problem of building a general-purpose
elasticity controller that guarantees SLO with adequate re-
source provisioning becomes exacerbated by the role of per-
formance interference. Previous works have proposed multiple
models ranging from simple threshold based scaling [3], [4]
to complex models based on reinforcement learning [5], [6],
control modelling [7], [8], [9], [10], and time series analysis
[11], [12] to drive the scaling decisions. While every model

comes with its host of benefits and demerits, the impact of
performance interference on elastic scaling is often overlooked.

CPU utilization [13], [12], [11], [9], [14] and workload
intensity [15], [8], [16], [17], [18] are two widely used indirect
metrics for elastic scaling since they are easily available
and correlate well with the measure of service quality such
as latency. In this paper, we investigate if the performance
interference from consolidation has a role to play on the
metrics used for making scaling decisions. We find that it
becomes imperative to quantify the contention in the system
in order to achieve accurate scaling.

Our main contribution is Hubbub-Scale; an elasticity con-
troller that achieves predictable performance in the face of
resource contention without any significant overhead. We
facilitate this by designing a middleware that provides an API
to quantify the amount of pressure the co-running VMs put on
the target system. Specifically our contributions are:

• We show that OS configuration, performance interfer-
ence and power-saving optimisations stand in the way
of predictable performance. While OS configuration
and power-saving optimisations can be controlled,
performance interference is inevitable in a multi-tenant
system and needs to be modelled.

• In the presence of performance interference, indirect
metrics used for elastic scaling cease to accurately
reflect the measure of service quality, consequently
affecting the scaling accuracy.

• In the presence of performance interference, even
relying on direct metrics like latency to scale can lead
to SLO violations.

• We build Hubbub-scale, an elasticity controller that is
reliable in the presence of performance interference
and achieves high resource utilization without violat-
ing the SLO.

II. ELASTIC SCALING

In this section, we give a brief background on load-based
elastic scaling and the required properties for the metrics used
to drive the scaling decision.

A. Scaling Type

Load-based scaling handle variable loads by starting ad-
ditional instances when the workload increases and stopping

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.71

233



instances when workload decreases, based on any of load
metrics, such as request intensity (RPS). It can be achieved
in three ways: reactive control, proactive control and a combi-
nation of reactive and proactive control. With reactive control,
the system relies on reacting to changes in a system metric
such as request intensity, intensity of I/O operations, CPU
utilization, or direct metrics like latency to make scaling
decisions. While this approach can scale the system with good
accuracy, the system reacts to a workload metric change only
after the change occurs and is observed. This may result in
SLO violation if the reaction is too late. Proactive control,
on the other hand, explores the historic access patterns of the
workload, in order to conduct workload prediction and perform
model-predictive control. With this approach, it is possible to
prepare the instances in advance and avoid any disruption in
the service when auto-scaling. Despite their respective merits
and demerits, both approaches require run-time measurement
of a metric to make the scaling decision and to drive the
elasticity control.

B. Choice of Metrics

The right choice of metrics (control input) is critical for
efficient elastic scaling since the performance, effectiveness
and precision of the elasticity controller depends on the quality
of the control input metric and the overhead in measuring and
monitoring the control input [19]. In literature, authors have
used a variety of metrics to make scaling decisions and to
drive the elasticity control. An extensive list of those metrics
is provided in [20]. A good choice of metric for the target
environment should satisfy the following properties: (i) the
metric should be easy to measure accurately without intrusive
instrumentation because the controller is typically external to
the guest application, (ii) the metric should be reasonably
stable with little variations, (iii) should allow for quick reaction
and (iv) the metric should correlate to the measure of level of
quality of service (e.g, the service’s average response time or
latency) as specified in the SLO.

Direct Metric: A straightforward approach to scale is to
directly rely on the metric (latency, response-time) specified
in the SLO to drive the scaling decisions. However, it does
not satisfy the properties of a good metric, since monitor-
ing latency/response-time involves an overhead in measuring,
needs instrumentation and reacts slower than an indirect met-
ric. Some developers are however willing to incur the overhead
in view of the benefits they accrue from easier scaling since
response variable to be tuned is measured directly.

Indirect Metric: Scaling using indirect metrics do not
measure the response variable directly, instead use other met-
rics that correlate well the measure of service quality (latency)
and satisfies the properties of a good metric. CPU utilization is
one such widely used metric [13], [12], [11], [9], [14]. It can
be obtained from the operating system or the virtual machine
without instrumenting application code. CPU utilization is
also a more stable signal than metrics like response time and
correlates well with the measure of service quality such as
latency/throughput [9]. Another widely used metric for elastic
scaling is workload in terms of Requests-per-second (RPS)
[15], [8], [16], [17], [18]. RPS can be an important way to
measure system performance and is mostly used for proactive
control. Netflix developed a system called scryer [15] that uses

workload to drive their proactive control for scaling decisions.
Because CPU utilization and workload intensity are widely
used in a large number of elasticity controllers, our work
focuses on these two indirect metrics.

III. MOTIVATION

There are 2 key aspects in elastic scaling that determine
the effectiveness of the scaling model: when to add or remove
instances (decision making phase), and, how many instances
to add/remove (scaling phase). Any lapse in the accuracy of
these two steps translates to SLO violations or increased cost
from over-provisioning of resources. For example, a delay in
adapting to an increasing load will result in SLO violations,
and erroneously adding more instances than required will result
in under utilized instances. All scaling models aim to minimise
SLO violations and improve the resource utilization. However,
existing scaling models fail to guarantee these properties in a
multi-tenant setting. We explain this from two perspectives:

Fig. 1: Variation of latency over time for a constant workload
(RPS). Until 10 mins, the application runs in isolation. After
10 mins, other applications are executed on the physical host,
generating contention at the shared system resources.

Using an indirect metric to scale: For ease of explana-
tion, consider a simple control model that reacts to indirect
system metrics to scale an application. The model learns the
relationship between the system metrics (workload intensity
(RPS), CPU utilization) and latency during a characterization
phase, and decides when to add/remove instances and how
many instances to add or remove in order to conform to its
SLO. Figure 1 shows the latency of the application for a
constant workload (RPS). After 10 mins, the model learnt by
the elasticity controller becomes void and violates the SLO
in the presence of interference. This is because the system
metrics do not accurately reflect the degradation caused by
performance interference and the model is unable to discern the
need to scale out. In other words, the system metrics correlate
differently with latency in the presence of interference. It is
important to note that a dynamic learning model will also fail
in the presence of interference as these metrics cannot attribute
accurately for resource contention. Without quantifying the
amount of contention in the system, it is not possible to achieve
accurate scaling in a multi-tenant environment.

Using a direct metric to scale: In the presence of
interference, even though the effect of degradation from con-
tention is reflected directly on latency, and accurately aids the
decision making phase, it can lead to over/under subscription
of resources during the scaling phase. Without any additional
information about contention, it is not possible to know the
exact number of instances needed to scale the system.
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(a) Variation of latency when CPU utilisation is maintained between 65 and 70% (b) Variation of latency when Workload (RPS) is fixed at 40000 RPS

Fig. 2: Frequency-scaling affects performance predictability. Once frequency-scaling is controlled, performance variation from
interference becomes predictable as shown by blue line.

For example, first consider an isolated setting where an
elastic application receives the workload Wc, handled by X
instances, that corresponds to latency LSLO. Without losing
generality, we assume a round-robin load balancer. For an
increased workload Wc + n, the total number of instances
needed to ensure that SLO is not violated can be calculated
as Wc+n

Wc
×X . Next, consider the case when the application is

provided in a multi-tenant virtualized environment. In this case,
the application can experience performance interference that
causes its performance degradation. The same latency LSLO
is then reached by a smaller workload Wic = Wc− δ because
of performance degradation. If the latency-driven elasticity
controller is unaware of interference, it will allocate Wc+n

Wc
×X

instances to handle the increased workload Wc+n. This means
that each instance will receive a workload greater than Wic,
thereby under subscribing to resources and violating SLO.
Without quantifying the interference (I) and knowing Wic, the
elasticity controller cannot make accurate scaling decisions
even when using a direct metric.

IV. SOURCES OF UNPREDICTABILITY

Given the wide use of CPU utilization and workload
intensity for driving the scaling decision, we set out to explore
the reliability of these metrics in a multi-tenant environment.
Our objective in this section is to answer if these metrics are
reliable in the face of performance interference and to identify
the different sources responsible for introducing unpredictabil-
ity in the metrics. To enable effective and accurate model
control for elastic scaling, the control input (CPU utilization,
Workload intensity etc) should be reliably predictable.

In order to discern the reliability of CPU utilization and
workload intensity (RPS), we perform experiments with Mem-
cached [21] under a controlled setting. We execute SPEC CPU
benchmarks [22] to create interference on the memory subsys-
tem. The experiment is carried out in 3 phases: no interference,
1x interference (when 1 SPEC CPU benchmark instance runs
alongside Memcached) and 2x interference (when 2 SPEC
CPU benchmark instances run alongside Memcached).

A. Is CPU utilization and Workload Intensity reliable in the
presence of performance interference?

Figure 2a shows the variation of Memcached latency when
the CPU utilization of Memcached is controlled to remain

between 65-70% by varying the workload. Figure 2b shows
the variation of Memcached latency when the workload is set
to 40000 RPS. In order to have a reliable model, the metric
should correlate well with latency and be reliably predictable.
Ideally, as the amount of performance interference increases,
the latency should increase. Figure 2a and figure 2b shows
that when frequency-scaling is enabled, the CPU driver can
scale the frequency of the processor depending on frequency
governor enabled on the operating system resulting in un-
predictable performance. However, once the frequency of the
processor is fixed (blue line in figure), Memcached behaves in
a predictable manner with latency acting directly proportional
to interference. Frequency-scaling introduces unpredictability
to the correlation between input metrics (CPU utilization,
workload intensity) and latency.

The observation that latency increases as performance in-
terference increases indicates that the correlation between input
metrics and latency gets skewed in the presence of interference.
i.e., for the same amount of workload intensity/CPU utiliza-
tion, Memcached can experience different latencies. Without
quantifying interference it is not possible to attribute this varia-
tion in correlation. Therefore, it becomes imperative to not only
take into account interference but also be able to quantify the
same in order to make reliable scaling decisions. Performance
interference just like frequency scaling skews the correlation
unless modelled. Table I provides a summary of the different
sources of variation, their impact on modelling and potential
ways to minimize this unpredictability. The metrics (CPU
utilization, Workload intensity) achieve more predictability
when all the sources of variation are controlled. However,
minimizing the unpredictability comes with significant trade-
offs and not all parameters can be completely controlled.
Contention is one such source as it manifests in multi-tenant
environments. While frequency-scaling and interrupt process-
ing can be controlled, performance interference is unavoidable
in a multi-tenant setting and needs to be modelled.

V. SYSTEM OVERVIEW

If we are able to model contention, then it is possible to
attribute the variation in correlation and still rely on these input
metrics to achieve reliable scaling. Contention can be seen as
the amount of pressure an application puts on different shared
resources such as memory-bandwidth or the cache. Each
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Source of Variation How to minimize variation Trade-offs involved Impact on Modelling

Interrupt Schedule Assign dedicated cores for in-
terrupts

Lower throughput when running at low
utilization

Minimal, since the interrupt schedule remains the
same throughout the life cycle of the service

Frequency Scaling Disable C-states and P-states Results in increased power usage High, Affects both CPU and Workload based
modelling.

Contention Over-provision resources Results in underutilized machines High, Affects both CPU and Workload based
modelling

TABLE I: Source of variation in CPU Utilization and Workload based modelling

application may have a different amount of cache and memory-
bandwidth usage and this determines the contentiousness of the
application. However, sensitivity to contention depends on the
application’s reliance on the shared memory subsystem and
how much an application progress benefits from this reliance.
Contention and sensitivity need not always be correlated [23]
and they need to be modelled separately during the run-time.
In our case, we are interested in the contentiousness of the co-
runners and the sensitivity of the target system. Prior works
[24], [25], [26], [27] use the target systems last level cache
(LLC) miss rate/ratio as an indicator to detect contention and
classify application for contention aware scheduling. While
LLC miss rate/ratio can be a good indicator of contention, it
suffers from the following limitation: An application can have
varying run-time behaviour and depending on the application
access patterns, LLC misses can vary over time making it
difficult to attribute if contention is the sole cause for LLC
misses. While it may be possible to detect contention in some
cases based on LLC misses, it still cannot quantify the amount
of degradation.

Fig. 3: Architecture of the middleware

PMU based approximation: For the reasons mentioned
above, instead of relying on the behaviour of the target system
alone, we take into account the co-runners behaviour for
quantifying the contention. We use performance monitoring
units (PMU) to approximate this behaviour. PMU’s are special
registers in modern CPUs that can collect low level hard-
ware characteristics of an application without any additional
overhead. The goals are two-fold: to identify the existence of
contention from the co-runners and to quantify the amount
of the pressure exerted on the target system. It is important
to quantify the amount of pressure exerted by the co-runners
since this has a direct impact on the amount of performance
degradation suffered by the target system. Different amount of
contention causes different amount of degradation.

Middleware: Figure 3 shows the architecture of the
middleware to quantify contention on the memory subsystem.
The middleware provides an API that can be queried to access
information about the contention from the co-runners. The

different components of the middleware provide the following
function: The classifier is responsible for identifying the VMs
that need to be monitored for contention. It optimises the
number of co-runners to be monitored. The role of the classifier
is to only select those VMs that are potential candidates for
creating contention at the memory subsystem. This minimizes
the overhead of unnecessarily analysing VMs that are idle or
not memory-subsystem intensive. The classifier maintains a
moving window of the average CPU utilization of different
VMs and selects only those VMs that consistently have a
CPU utilization over a certain threshold. This is because any
application that is intensive on the memory-subsystem has a
high CPU utilization. In our experiments we set our threshold
to 30%. The list of selected VMs are then passed on to the
PMU Monitor. The PMU Monitor monitors the performance
counters of the VM using the ”burst-approach” as explained
in the next section. The measured counter values are then
passed on to the aggregator that calculates a metric called
the interference-index (explained in section VI) . Interference-
index approximates the pressure the co-runners put on the tar-
get system. The aggregator subsequently makes them available
for the API along with the monitored counter values to allow
for a user specific composition for quantifying contention. By
exposing different counter metrics through the API, it also
allows the users to compose their own index of pressure for
any subsystem.

Burst-Approach: Typically performance counters are
saved/restored when a context switch changes to a different
process, which costs a couple of microseconds. Since these
counters can hold context for only a single process at a time,
monitoring the behaviour of the co-runners during runtime
requires the middleware to adapt to this limitation. We cir-
cumvent this limitation by using a ”burst-approach” where
different co-runners are monitored in bursts and their values
composed together within a single time-frame. A time-frame is
defined as the period during which an application is assumed
to have minimal variations in its behaviour. Consider, for
example 2 VMs co-located on a physical host. In order to
monitor their behaviour, the middleware collects the counters
of each VM one after another in cycles. The time chosen to
measure the counters of all the VMs exactly once defines a
time-frame. Figure 3 shows one time-frame of execution. It
is important to ensure that the chosen time-frame is neither
too long nor too short. A very short time-frame can leave
no time for the counters to be monitored since releasing and
reacquiring the counters costs a couple of microseconds. Also,
very short durations do not accurately capture the application
behaviour. On the other hand, long time-frames aren’t ideal
either because it increases the probability of variation in the
application behaviour and violates the assumption that the
application experiences minimal variations. This is important
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because the behaviour of every co-runner is composed together
each time-frame. Major variations in the application behaviour
during a time-frame can thus result in misleading conclusions.

(a) C’s data is remote, hence S contends with C’s only for L3
cache (config-a)

(b) C runs on a different processor, hence S contends with C’s
only for memory bandwidth (config-b)

(c) S and C share both memory bandwidth and L3 cache and
hence contend for both (config-c)

Fig. 4: Configurations for generating contention at different
resources. S denotes the storage system and M(S) denotes the
memory allocation of S. C denotes the co-runners and M(C)
denotes the memory allocation of C. I denotes the core serving
interrupts.

VI. CHARACTERISING CONTENTION

In order to characterise contention, we choose in-memory
storage systems, i.e. Memcached and Redis, as demonstra-
tive target systems to show the scaling of services under
performance interference. We identify which resources, upon
contention, degrade the performance of the storage system and
the properties of the co-runners that determine the level of
contention. In order to understand the properties of the storage
systems and the memory sub-system they are sensitive to, we
characterise them on a NUMA machine.

Co-runner
(6X)

Cache
Refer-
ences
(millions)

Cache
Misses
(millions)

L3
Prefetch
(millions)

L3
Prefetch
miss
(millions)

Memory
band-
width
(GB/s)

mbw 150.1 54.1 73.76 68.29 20.3

stream 133.2 47.3 107.2 98.6 20.5

lbm 63.1 25.5 135.1 102.2 18.8

linearwalk 228 84.6 150.5 91.2 22.4

libquantum 242.5 91.6 93.3 57.7 21.2

randomwalk 1055.5 137.7 0.165 0.132 8.4

povray 24.6 0.015 37.6 0.009 0.01

TABLE II: Memory-subsystem behaviour of co-runners sorted
by performance drop (highest to lowest) experienced by Redis
and Memcached

We say that the storage system co-runs with other ap-
plications when they all run on different cores of the same
physical host; we refer to all these applications as co-runners.
We denote the storage system by S and each of its co-runners

by C. In our experiments, we compute the performance drop
as follows: First, we measure the average latency Li of the
storage system when running in isolation. Then we measure
the average latency Lc of the storage system when it co-runs
with other processes. Performance drop suffered is Lc−Li

Li
.

A. Sources of degradation

There are 2 main subsystems responsible for contention:
the cache and the memory bandwidth. In order to assess the
impact of contention on these subsystems, we use three system
configurations illustrated in figure 4. They are designed to gen-
erate contention at different resources: the first configuration
generates contention only on the cache, the second only on the
memory bandwidth and the third one on both. Figure 5 and
6 show the drop in performance experienced by Memcached
and Redis respectively.

For both Memcached and Redis, it is clear that cache
is the dominant source of performance degradation. In the
case of Redis, cache contributes to a maximum of 30% drop
in performance (figure 6a) while bandwidth only causes 8%
(figure 6b). Similar observations can be made for Memcached,
with cache contributing upto 65% drop in performance and
bandwidth contributing less than 10%. However, the over
all drop in performance drop of Redis is much higher in
comparison to Memcached. Upon deeper analysis, we found
that beyond 10000 RPS, Redis reaches a point of saturation
in terms of available CPU. With proper configuration and
optimization, it is possible to improve the throughput of Redis
much beyond this limit. Since our intent is to demonstrate
the impact of interference, we do not consider optimization or
configuration set up to improve throughput. The results show
that both the storage system benefits more from it’s reliance
on the cache than from memory bandwidth.

Our results are related to the conclusion drawn by running
packet processing workloads on multicore platforms. The
dominant contention source was found to be the cache [28].
As we will show, the difference comes from our observation
that memory access pattern also impacts the performance
of in-memory storage systems. On the contrary, SPEC CPU
benchmarks are more sensitive on memory bandwidth [23].

B. Properties that determine degradation

We investigate properties of the co-running application that
cause performance degradation. In both figures 5 and 6, all the
different co-runners cause degradation in the same order; ie.
mbw consistently causes the highest amount of performance
degradation, followed by stream, lbm, and povray. In order to
understand the properties that define the aggressiveness of the
co-runners, we rely on PMUs. L3 cache-references of the co-
running applications were consistent with our observation and
appears to mostly determine the degradation suffered. mbw has
the highest number of cache-references and povray the lowest.
This makes sense because higher cache references from the
co-runners effectively reduces the cache space of the storage
system, resulting in a drop in performance.

However, table II (sorted by descending order of perfor-
mance degradation) shows that cache-references alone does
not determine the performance drop of the storage system.
For example: randomwalk, linearwalk and libquantum have
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(a) Contention for L3 cache (config-a) (b) Contention for memory bandwidth (config-b) (c) Contention for both resources (config-c)

Fig. 5: The drop in performance of Memcached for different throughputs. Memcached is run alongside 6 instances of different
co-runners.

(a) Contention for L3 cache (config-a) (b) Contention for memory bandwidth (config-b) (c) Contention for both resources (config-c)

Fig. 6: The drop in performance of Redis for different throughputs. Redis is run alongside 6 instances of different co-runners.

higher cache references than mbw, but they cause much lesser
degradation. Linearwalk does a walk through the memory in a
linear fashion being completely predictable, while randomwalk
pseudo randomly walks within a page. Our results show that
the sensitivity of the storage system also depends on the
memory access patterns of the co-runner. We designed the
application linearwalk and randomwalk precisely to study this
property. Cache references do not capture the memory access
patterns of the application. However, cache misses along with
prefetch misses can provide hints about the memory access
patterns of the application. In order to identify all relevant
counters that affect the sensitivity of the storage system, we
run a typical feature selection process that evaluates the effect
of different performance counters on the sensitivity of the
storage system. The chosen performance counters are shown
in III. The chosen metrics correlate well with our observation
on memory access patterns and cache access intensity of the
co-runner. The feature selection process however indicated
that DTLB loads and stores of the co-runner also reflect
the sensitivity of the storage system. When we quantify the
interference index we found that the impact of DTLB loads
and stores are minimal and cache-references, cache-misses,
prefetch and prefetch-misses are the strongest indicators to
model sensitivity. Our model also includes cache-references
of the target system to take into account different workloads.
It inherently allows to generate a performance degradation
model for different workloads. In the following section we
explain the process of constructing the measure of degradation
(interference-index) from these performance counters.

Summary: Although the dominant contention factor is
the cache, sensitivity of the storage system is not determined
only by the number of cache references of the co-runners. The

memory access pattern of the co-runner plays a significant role
in determining the performance of the storage system.

C. Interference-Index

The goal of characterising contention is to quantify the
properties of the co-runners that lead to performance degra-
dation of the storage system. We call this metric interference-
index and it approximates the performance degradation suf-
fered by the storage system. In order to be useful for elastic
scaling, the metric must correlate with the performance drop
suffered by the storage system.

Name Description Name Description

cpu-clk Reference cycles inst-retired Instructions retired

cache-ref
(Co-runner&
Target-
system)

References to L3
cache

cache-miss L3 cache misses

llc-prefetch L3 prefetches llc-prefetch-
miss

L3 prefetch misses

dtlb-loads DTLB loads dtlb-load-miss load misses in
DTLB that cause
page walks

dtlb-store DTLB stores dtlb-store-miss store misses in
DTLB that cause
page walks

TABLE III: Performance counters included in characterising
contention

We derive a set of N representative performance counters
WS = m1,m2, ...,mN where mi represents the metric i. For
applicability across heterogeneous machines, we rely only
on generic counters to approximate this pressure. We find
that even relying on a very coarse approximation to quantify
contention can improve the accuracy of the scaling decisions
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significantly. Using the counters in III and a training data
set of co-runners, our system then builds a model that corre-
lates co-runner properties with performance drop suffered by
the storage system. We then use linear regression on these
counter to construct the interference index. Figure 7 shows
the interference-index constructed for Memcached. Since the
modeling is data-driven, the interference index generated is
application-dependent. We however do not view this as an
issue since modeling can be fully automated.

From figure 7, we see that interference-index correlates
with performance drop suffered by the storage system. Higher
the interference-index, greater the performance drop experi-
enced by the storage system. Also similar interference-index
should correspond to similar drop in performance. For exam-
ple, mbw4 and stream4 indicate 4 instances of the co-runners
mbw and stream respectively and are not included in the
training set. stream4 causes similar degradation as linear walk
and they both correspond to the similar interference indexes.
mbw4 causes a degradation that is greater than linear walk
but lesser than lbm and is also captured by the model as
expected. We also test our model on a different set of co-
runner, omnetpp from the SPEC benchmark. Our model is able
to predict the drop with a good accuracy. Once interference-
index is quantified, it is then used as a control input along with
CPU utilization/workload intensity for the elasticity controller.

Fig. 7: Interference-index quantifies the performance drop
suffered by Memcached based on the behaviour of the co-
runner.

VII. ELASTICITY CONTROLLER

The main goal of an elasticity controller is to allocate
adequate resource to a provisioned system in order to make
the system operating in a healthy region that matches the
control goal, e.g. Service Level Objective (SLO). The elasticity
controller also optimizes the provisioning cost and prevents
over-provisioning by allocating resources only when needed
and freeing them when they are no longer needed. In our
scenario, we define average service latency in small epochs
(10 second) as our control goal, which is one of the com-
mon metrics specified in SLO between service providers and
consumers. In the scenario of cloud computing, the amount
of resources is translated to the number of virtual machines
(VMs). As mentioned before, we target elasticity controllers
that monitor system metrics, i.e. CPU utilization or incoming
workload, i.e. read and write request rates, and model them
as inputs. The former metric is commonly used to build
an elasticity controller based on control theory [9], [3], [4]

while the latter one is widely used to construct an elasticity
controller using model-based control [18], [17], [8], such as
Statistical Machine Learning (SML). Our observations from
section IV show that the number of VMs in the system cannot
be directly and linearly translated to the capability of the
system to handle workload. Specifically, handling a workload
under SLO constraint requires different numbers of virtual
machines depending on the presence and intensity of VM
interference. In Hubbub-Scale, we quantify the interference
experienced in the system by querying the middleware API for
interference index. Apart from this, the controller also takes
CPU utilization and incoming workload intensity to model the
load in the system.

Hubbub-scale is implemented as a centralized elasticity
controller and its scaling decision is made by consulting
control models that are built in an online fashion. There are
two separate processes running in the Hubbub-scale controller
that we call the model training process and the scaling process.
Both processes run in parallel at different frequencies and do
not interfere with each other. The model training process is
used to continuously learn the application behaviours under
different loads and intensities of interferences and update the
control model. The load of the system is learnt from the
sampled workload intensity or the CPU utilization on each
VM. The monitored system behavior is narrowed down to
the interested control goal, which is average service latency
in small epochs. It is achieved by instrumenting the system
to sample read and write latencies. We keep the monitoring
overhead minimal by reducing the percentage of the sampled
requests and the reporting frequency of the statistics to the
model training process. The model training process updates the
model with a simple data fading algorithm that uses weighted
averages of service latencies from the most recent 10 epochs.

The scaling process consults the updated model with the
monitored load of the system and the interference index from
our API to make scaling decisions. To be specific, Hubbub-
scale models the load of a system in two ways: workload-
based modeling and CPU-based modeling The parameters used
in workload-based and CPU-based models are firstly trained
offline, and then improved during our online training process.

Workload-based Modelling: In workload-based model-
ing, the model is built and trained in a form of a binary
classifier, which is widely used in recent works [18], [17], [8].
The classifier classifies the operational status of the modeled
system. In our case, it models whether the system is operating
in a state where its service latency violates the SLOs or not.
Figure 8 shows a simplified version of Hubbub classifier,
which uses finer data granularity, for explanation purposes. The
binary classifier assumes that a certain VM is able to handle
a specific load of the system, incoming read and write request
rates, within the SLO constraint. The classifier is trained by
having VMs operating with different intensity of workloads
and monitoring the achievement of SLO. For example, when
training the model without interference, an operating state with
SLO violated is marked as a red cross in Figure 8 and an
operating state complying SLO is marked as a green dot. The
bounder of the red crosses and green dots is learnt using
SVM (Support Vector Machine), which forms the classifier
(the black border). Hubbub-scale provisions the underlying
system to be operated just under the bounder of the classifier to
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save the provisioning cost while satisfying the SLO. Hubbub-
scale trains the classifier not only based on the incoming
workload in terms of read and write request rate, but also takes
into account the interference experienced on VMs, which is
indicated from our interference index. Specifically, the amount
of workload that can be handled by a VM is also learnt under
different interference indexes with respect to the latency SLO
constraint. The blue and pink borders in Figure 8 illustrate the
learnt classifiers under 0.3 and 0.6 interference index. Thus,
the binary classifier used in Hubbub-scale has 3 dimensions.
It has an additional interference index dimension compared to
the classifier proposed in [17], which has only 2 dimensions.

By obtaining the current workload and interference index,
Hubbub-scale controller is able to calculate the number of
VMs needed in the system using the following formula, where
AverageT hroughput perServer denotes the throughput that can
be handled by a server within the SLO constraint in the current
level of the interference index.

NewNumbero f Servers =
CurrentWorkload

AverageT hroughput perServer

Fig. 8: Throughput Performance Model for different levels of
Interference. Red and green points mark the detailed profiling
region of SLO violation and safe operation respectively in the
case of no interference.

CPU-based Modelling: Hubbub-scale can also model
system’s load using CPU utilization on each VM. A classical
integral controller is built because of its self-correcting and
provably stable performance in the application of a wide range
of scenarios, and has been used successfully in state of the art
systems [9], [29], [30], [31]. The core of the integral controller
is the following formula:

ak+1 = ak +Ki ∗ (yre f − yk) (1)

ak and ak+1 are continuous integers that represent system
capability at current control period and the next control period,
which is then translated to the number of VMs that are needed
in the system. Ki is the integral gain parameter [30]. yk is
the current input and yre f is the desired input. The inputs
are the monitored aggregated CPU utilization. Different values
of desired CPU utilization yre f are obtained with respect
to a certain level of interference and the latency SLO. The
controller obtains the desired VM numbers ak+1 from the
previous time step ak proportionally to the deviation between
the current yk and desired yre f values of the CPU utilization
in the current control period.

The difference between Hubbub-scale and a standard scal-
ing approach is that Hubbub-scale takes into account the
interference index in its model building. Standard scaling
approaches rely on the standard modelling techniques, i.e.,

workload-based modeling and CPU-based modeling, used in
the state of the art systems [17], [9], [18]. Specifically, standard
workload-based modeling assumes a VM performs in an
ideal scenario and is always capable of handling a specific
workload without any knowledge of interference, similar to
the implementation in [17], [8]. Standard CPU-based modeling
only has one reference value (yre f ) in the model with respect to
the latency SLO. In our evaluation, we show the inaccuracy of
the standard modeling in the presence of interference and the
accuracy of Hubbub-scale in conforming to SLO requirements.

Overhead: Our middleware has a very minimal overhead
since it only samples the counters every few seconds. It has
a negligible CPU consumption of less than 3% and does not
perform any instrumentation to the application that result in
performance loss. Hubbub-Scale incurs very negligible over-
head in comparison to standard modelling approaches since the
only additional step involved is the construction of interference
index, which in itself relies on non-intrusive monitoring.

VIII. EXPERIMENTAL EVALUATION

We implemented our middleware on top of a KVM virtu-
alization platform and conducted extensive evaluation using
Memcached and Redis for varying types of workload and
varying degrees of interference. This section describes our
experiment setups and results.

A. Experiment Setup

All our experiments were conducted on the KTH private
Cloud which is managed by Openstack [32]. Each host is an
Intel Xeon 3.00 GHz CPU with 24 cores, 42GB memory and
runs Ubuntu 12.04 on 3.2.0-63-generic kernel. It has a 12
MB L3 cache and uses KVM virtualization. The guest runs
Ubuntu 12.04 with varying resource provisioning depending
on the experiment. We co-locate memory intensive VMs with
the storage system on the same socket for varying degrees of
interference by adding and removing the number of instances.
MBW, Stream and SPEC CPU benchmarks are run in different
combinations to generate interference. In all our experiments
we disable DVFS from the host OS using the Linux CPU-freq
subsystem.

Our middleware performs fine-grained monitoring by fre-
quently sampling the CPU utilization and the different perfor-
mance counters for all the VMs on the host and repeatedly
updates the interference index every 1 min. The time-frame
chosen for monitoring the selected VMs after classification
is 15 seconds and the counters are released for use by other
processes for 45 seconds. The hosts running our experiments
also run VMs from other users which introduces some amount
of noise to our evaluation. However, our middleware also takes
into account those VMs to quantify the amount of pressure
exerted by them on the memory subsystem.

To focus on Hubbub-Scale rather than on the idiosyncrasies
of our private Cloud environment, our experiments assume that
the VM instances to be added are pre-created and stopped.
These pre-created VMs are ready for immediate use and state
management across the service is the responsibility of the
running service, not Hubbub-Scale. Alternatively, interference
generated from data migration can be accounted for by the
middleware to redefine the SLO border to avoid excessive
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SLO violations from state transfer. In order to demonstrate
the exact impact of varying interference on Hubbub-Scale, we
generate equal amounts of interference on all physical hosts
and decisions for scaling out are based on the model from
any one of the hosts. The load is balanced in a round robin
fashion to ensure all the instances receive an equal share of
the workload. We note that none of this is a limitation of
Hubbub-Scale and is performed only to accurately demonstrate
the effectiveness of the system in adapting to varying levels of
workload and interference with respect to the latency SLO.

The control model of Hubbub-scale is partially trained
offline before putting it online. Offline training is highly
recommended but not mandatory. It identifies the operational
region of the controlled system on a particular VM in an
interference-free environment. Also, it improves the accuracy
of the scaling during warm up phase. However, the Hubbub-
scale control model can never be fully trained offline, because
inter-VM interferences are hard to artificially produce as a
cloud tenant. So, this part of the model can only get trained in
an online fashion. The control models used in our evaluations
are well warmed up by training them with different workloads
and interferences online.

B. Results

Our experiments are designed to demonstrate the ability of
Hubbub-Scale to dynamically adapt the number of instances to
varying workload intensity and varying levels of interference,
without compromising the latency SLO. The experiments are
carried out in four phases, shown in figure 9i with each phase
(separated by a vertical line) corresponding to a different com-
bination of workload and interference setting. We begin with
a workload that increases and then drops with no interference
in the system. The second phase corresponds to a constant
workload with an increasing amount of interference and later
drops. The third phase consists of a varying workload with a
constant amount of interference and in the final phase, both
workload and interference vary. We carry out this experiment
for 2 different types of control models: workload-based mod-
elling and CPU-based modelling.

1) Scaling Out using a Workload based Model with/without
Interference: Figure 9ii(b) and 9iii(b) compares the latency of
a standard control model based on throughput performance
modelling against Hubbub-Scale for all the four different
phases for Memcached and Redis respectively. Without any
interference (first phase), both systems perform equally well.
However, in the presence of interference, the SLO guarantees
of a standard control model begins to deteriorate significantly
(figure 9ii(b), plotted in log scale to show the scale of deterio-
ration). Hubbub-scale performs well in the face of interference
and upholds the SLO commitment. The occasional spikes
are observed because the system reacts to the changes only
after they are seen. Figure9i(b) plots the interference index
captured by the middleware during the run-time corresponding
to the intensity of interference generated in the system. The
index captures the pressure on the storage system for different
intensities of interference. Certain phases of the interference
index in the second phase do not overlap because of the inter-
ference from other users sharing the physical host (apart from
generated interference). We found that during these periods
services such as Zookeeper and Storm client were running

alongside our experiments increasing the effective interference
generated in the system. Figure 9ii(a) and 9iii(a) plots the
number of active VM instances and shows that Hubbub-Scale
is aware of interference and spawns enough instances to satisfy
the SLO. In section VIII-C we show that Hubbub-scale does
not over-provision instances to maintain the SLO.

2) Scaling Out using a CPU based Model with/without
Interference: We construct a control model based on CPU
as explained in section 5. Figure 9ii(d) and 9iii(d) plots the
results from scaling out Memcached and Redis during the four
different phases. Figure 9ii(c) and 9iii(c) plots the number of
active VM instances as the workload intensity and interference
intensity changes in four phases. Hubbub-Scale is aware of
interference and adapts to it by spawning the right number
of instances. Both Hubbub-Scale and the standard scaling
perform equally well during the first phase and provision the
same number of VMs to deal with the increasing workload
in the absence of any interference. Hubbub-Scale adapts to
the increasing interference and spawns more VMs to maintain
the SLO requirement while standard modelling approaches
fail. Figure 9i(c) shows the interference index captured during
the runtime. Despite running a mix of different interfering
applications, the index retains relative meaning and is robust
enough to capture the pressure on the memory subsystem.

Our experiments indicate that a standard control model fails
to capture the correlation between workload and latency in a
multi-tenant scenario. Even a coarse approximation of resource
contention is enough to drive the accuracy of the controller by
a significant scale and minimize SLO violations.

C. Utility Measure

An efficient elasticity controller must be able to achieve
high resource utilization and at the same time guarantee SLO
commitments. Since achieving low latency and high resource
utilization are contradictory goals, the utility measure needs
to capture the goodness in achieving both these properties.
While a system can outperform another in any one of these
properties, a fair comparison between different systems can be
drawn only when both the aspects are taken into account in
composition. To this order, we define the utility measure as
the cost incurred:

U =V M hours+Penalty

Penalty = DurationO f SLAViolations∗ penalty f actor

DurationO f SLAViolations is the duration through the period
of the experiment the SLA is violated. We vary the penalty
factor which captures the different cost incurred for SLO
violations. Figure 10 shows the utility measure for 5 different
scaling approaches. Ideal scaling represents the theoretical
best scaling possible with right VM allocation and no SLO
violations. Without any penalty for SLO violations, standard
modelling incurs the lowest cost because it allocates only a
few instances but results in SLO violations. But as the penalty
for SLO violations increase, Hubbub-Scale achieves low utility
(cost), which is much better than both standard scaling meth-
ods and comparable to ideal approach. Results with penalty=0
also shows that Hubbub-scale allocates a comparable number
of VMs to ideal approach and does not achieve SLO guarantees
by unfairly over-provisioning resources. We also note that this
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(i) Experimental setup (ii) Memcached Results (iii) Redis Results

Fig. 9: (i) 9i shows the experimental setup. The workload and interference are divided into 4 phases of different combinations
demarcated by vertical lines. 9i(b) is the interference index generated when running Memcached and 9i(c) is the interference
index generated when running Redis. (ii) 9ii shows the results of running Memcached across the different phases. 9ii(a) and
9ii(b) shows the number of VMs and latency of Memcached for a workload based model. 9ii(c) and 9ii(d) hows the number
of VMs and latency of Memcached for a CPU based model. (iii) 9iii shows the results of running Redis across the different
phases. 9iii(a) and 9iii(b) shows the number of VMs and latency of Redis for a workload based model. 9iii(c) and 9iii(d) hows
the number of VMs and latency of Redis for a CPU based model.

is a consequence of the way our experiments are carried out
with interference on all physical hosts. With a round robin
scheduler, the elasticity controller does over provision to some
extent since each host roughly receive the same number of
requests, and the maximum requests per server is capped by
the lowest amount of workload that can be handled without
violating the SLO. This over-provisioning can be mitigated by
making the load balancer interference aware.

Fig. 10: Utility measure for different Scaling approaches.
VMs ideal represents the theoretically best scaling pos-
sible without any over-provisioning or SLO violations.
VMs c hubbub and VMs c standard represents the utility
measure of CPU based scaling using Hubbub and standard
modelling respectively. VMs hubbub and VMs standard rep-
resents the utility measure of workload based scaling using
Hubbub and standard modelling respectively.

IX. RELATED WORK

Performance Interference: DejaVu [33] relies on an
online-clustering algorithm to adapt to load variations by com-
paring the performance of a production VM and a replica of it
that runs in a sand-box to detect interference and learns from
previous allocations the number of machines for scaling. We

model contention from the behaviour of the co-runners. Our
solution instead shows ways to quantify the interference-index
and how this can be used to perform reliable elastic scaling.
A similar system, DeepDive [1], first relies on a warning
system running in the VMM to conduct early interference
analysis. When the system suspects that one or more VMs
are subjected to interference, it clones the VM on-demand and
executes it in a sandboxed environment to detect interference.
If interference does exist, the most aggressive VM is migrated
on to another physical machine. Both these approaches require
a sand boxed environment to detect interference as they do
not consider the behaviour of the co-runners. Stay-Away [34]
is a dynamic reconfiguration technique that throttles batch
application proactively to minimise the impact of performance
interference and guarantee QoS of latency critical services.

Another class of work has also investigated providing
QoS management for different applications on multicore [35],
[36], [37]. While demonstrating promising results, resource
partitioning typically requires changes to the hardware design,
which is not feasible for existing systems. Recent efforts [28],
[38], [39] demonstrate that it is possible to accurately predict
the degradation caused by interference by prior analysis of
workload. In [40] the application is profiled statically to predict
interference and identify safe co-locations for VMs. It mainly
focuses on predicting which applications can be co-run with a
given application without degrading its QoS beyond a certain
threshold. The limitation of static profiling introduces a lack of
ability to adapt to changes in application dynamic behaviour.
Paragon [41] tries to overcome the problem of complete
static profiling by profiling only a part of the application and
relies on a recommendation system, based on the knowledge
of previous execution, to identify the best placement for
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applications with respect to interference. Since only a part of
the application is profiled, dynamic behaviours such as phase
changes and workload changes are not captured and can lead
to a suboptimal schedule resulting in performance degradation.
Our work, in contrast, relies on quantifying contention in real
time, allowing it to adapt to workload and phase changes.

Elastic Scaling: Amazon Auto Scaling [3] is an exist-
ing production cloud system which depends on the user to
define thresholds for scaling up/down resources. However, it
is difficult for the user to know the right scaling conditions.
Rightscale [4] is an industrial elastic scaling mechanism and
uses load-based threshold to automatically trigger creation of
new virtual instances. It uses an additive-increase controller
and can take a long time to converge and know the requisite
amount of machines for handling the increasing load.

Reinforcement learning is usually used to understand the
application behaviors by building empirical models either
online or offline. Simon [5] presents an elasticity controller
that integrates several empirical models and switches among
them to obtain better performance predictions. The elasticity
controller built in [6] uses analytical modeling and machine-
learning. They argued that by combining both approaches, it
results in better controller accuracy. Although reinforcement-
learning mechanisms converge to an optimal policy after a
relatively long time, it reward mechanisms cannot adapt to
rapidly changing interference as it is unaware of the amount
of contention in the system.

Control theory aims to define either a proactive or a
reactive controller to automatically adjust the resources based
on application demands. Previous works [7], [8], [9], [10]
have extensively studied applying control theory to achieve
fine grained resource allocations that conform to a given SLO.
However, the existing approaches are unaware of interference
and will consequently fail to meet the SLO.

In Time series based approach, a given performance metric
is sampled periodically at fixed intervals and analysed to make
future predictions. Typically these techniques are employed for
workload or resource usage prediction and is used to derive a
suitable scaling action plan. Chandra et al.[42] perform work-
load prediction using a histogram and auto-regression methods.
Gmach et al.[43] used a Fourier transform-based scheme
to perform offline extraction of long-term cyclic workload
patterns. PRESS [12] and CloudScale [11] perform long-term
cyclic pattern extraction and resource demand prediction to
scale up. Although these approaches account for performance
interference inherently, they are known to perform well only
when periodic patterns exist, which is not always true in a
dynamic environment such as Cloud. Our proposed approach
using a control model, combines both online and offline
training to achieve efficient scaling plans.

X. CONCLUSION

We conducted systematic experiments to understand the
impact of performance interference on CPU utilization and
workload, two widely used metrics in elastic scaling. Our
observations show that metrics become unreliable and do
not accurately reflect the measure of service quality in the
face of performance interference. Discounting the number
of VMs in a physical host and the amount of interference

generated can lead to inefficient scaling decisions that result
in under-provisioning or over-provisioning of resources. It
becomes imperative to be aware of interference to facilitate
accurate scaling decisions. The implication of this observation
introduces significant challenges in answering the following
questions under multi-tenancy scenarios on: when to scale,
how many VMs to launch, and where to place VMs.

We model and quantify performance interference as an
index that can be used in the models of elasticity controllers.
We demonstrate the usage of this index with CPU utilization
and workload intensity by building Hubbub-scale, an elasticity
controller that can reliably make scaling decisions in the
presence of interference.
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