Socially-Aware Distributed Hash Tables for
Decentralized Online Social Networks

Muhammad Anis Uddin Nasir#!, Sarunas Girdzijauskas#? Nicolas Kourtellis*?

#KTH Royal Institute of Technology, Stockholm, Sweden
*Telefonica Research, Barcelona, Spain

1anisu@kth.se, 2sarunasg@kth. se,

Abstract—Many decentralized online social networks (DOSNs)
have been proposed due to an increase in awareness related to
privacy and scalability issues in centralized social networks. Such
decentralized networks transfer processing and storage function-
alities from the service providers towards the end users. DOSNs
require individualistic implementation for services, (i.e., search,
information dissemination, storage, and publish/subscribe). How-
ever, many of these services mostly perform social queries, where
OSN users are interested in accessing information of their friends.
In our work, we design a socially-aware distributed hash table
(DHTs) for efficient implementation of DOSNs. In particular,
we propose a gossip-based algorithm to place users in a DHT,
while maximizing the social awareness among them. Through
a set of experiments, we show that our approach reduces the
lookup latency by almost 30% and improves the reliability of
the communication by nearly 10% via trusted contacts.

I. INTRODUCTION

Online social networks are ubiquitous, from friendship net-
works like Facebook, to professional networks like LinkedIn.
A variety of different services are supported in these platforms,
such as search, information dissemination, storage, profile
management, and application integration. Such networks are
well known to have small world properties, i.e., high clustering
and small diameter [1].

Currently, most of the social networks operate in a central-
ized fashion with a central service responsible for providing
the social network services. The incentive for a provider is
the access to large amounts of data, which can be used for
business-related purposes [2, 3]. However, these incentives
have raised privacy concerns among users. Therefore, in the
last decade, researchers and the open source community have
proposed various decentralized solutions (e.g., [4, 5, 6, 7, 8,
9]) that remove dependency on a centralized provider.

Indeed, a decentralized environment, such as the one in the
aforementioned solutions, requires independent implementa-
tion for each of these components for good quality of service.
For example, for information dissemination, social users are
interested in propagating the information to their direct friends,
whereas for search service, they are interested in accessing the
complete knowledge of the network. However, individualistic
employment for different services imposes an expensive and
challenging burden on a DOSN community.

DHTs [10] are a very promising solution for DOSNs since
they provide all required functionalities with a limited peer
degree in the resulting overlays [9, 11, 12]. Such overlays are

3nicolas.kourtellis@telefonica. com,

(@) (b)

Fig. 1: Example of creating an overlay. The edges (in black color)
represent a search request from one blue node to another blue node
in the overlay. (a) search route in a random DHT-based overlay, and
(b) search route in a socially-aware DHT overlay.

small-world in nature and have efficient routing properties.
However, current DHTs create such overlays solely based on
the peer IDs which are assigned uniformly at random and do
not reflect the social graph structure of DOSNs. This signif-
icantly downgrades the performance of DHT-based DOSNs
since most of the workloads directly reflect the topology of
the social graph mapped on the overlay [13]. On a DHT-
based DOSN, such requests would correspond to generating
expensive relay traffic for performing simple actions on each
social link.

DOSN users can be arranged in a friend-to-friend network
with each user maintaining the information related to their
direct connections. Each user leverages a push mechanism
to send an update to all of their neighbors. DOSNs like
PeerSON [7] propose a similar solution with an additional
lookup service. Such solutions are easy to implement as they
involve only interested nodes for information distribution,
which leads to a low data propagation time. However, they
create various challenges, like work imbalance and scalability,
due to the presence of skew in small-world social networks.
For instance, a scheme may impose heavy workload on high
degree users, which makes the service unusable for such users
operating via a hand-held device.

Figure 1 shows a toy example of a search request in two
different overlays: a) a random DHT-based overlay and b) a
socially-aware DHT-based overlay. The overlay Figure 1 (a)
is a simple arrangement of users in the form of a ring, where

users are assigned identifiers uniformly at random. This type
of assignment will lead to high communication cost, as many
uninterested peers (relay nodes) are involved in the search
process. However, search process improves by placing close
socially-connected users (same color) in the ring, as shown in
Figure 1(b).

In our work, we aim to improve the performance of DHT-
based DOSN services by designing a socially-aware DHT.
Specifically, we leverage a DHT as an underlying overlay and
achieve social awareness by migrating nodes across the DHT,
without modifying the actual overlay. Since it is known that
social graphs are small-world in nature, our task would be
to identify proper subsets of our social network graph which
most closely represent the graphs observed in DHT overlays.
In particular, we need to assign IDs for each participating node
in such a way, that a decentralized greedy routing algorithm
would perform most efficiently while traversing mostly ex-
isting social-links. Also, this social awareness will result in
improving the reliability among nodes in the overlay [14] as
messages between them will traverse friendly nodes.

We propose to smartly embed social networks on top of
DHTs, like symphony [15]. Our work is inspired by [16],
where an approach was proposed for embedding small world
graph on top of a Kleinberg’s two dimensional grid using a
statistical estimation. Following the same path, we propose to
embed social network on top of small world DHTs. We believe
that the presence of small-world properties, i.e., high clustering
and small diameter, in both social networks and DHTs, will
enable direct embedding of social networks on a DHT. Small
world properties allow us to create a notion of ties among
nodes in both networks. This information can further be used
to create mapping of users on both networks.

We propose a gossip-based algorithm to perform this em-
bedding of the social network in the DHT overlay. We show
that our approach reduces the lookup latency by almost 30% in
the network and improves the reliability of the communication
by nearly 10% via trusted contacts.

II. OVERVIEW AND RELATED WORK

In this section we outline the steps of our method and
provide a comparison with related work on DOSNSs built on
top of DHTs.

A. Overview

The problem we are tackling is similar to clustering, where
we need to arrange nodes in an overlay while taking into
account their social proximity. One solution to the problem is
taking the snapshot of the social network, running a clustering
algorithm, and assigning the identifiers to nodes based on their
clusters. However, this can be a costly operation, possibly
depended on acquiring a global view of the social graph.
On the contrary, we propose the use of an incremental and
decentralized gossip-based algorithm for embedding the social
network on top of a DHT. The gossip-based approach towards
grouping similar nodes in our work is inspired by [17, 18, 19].
In our work, we use the gossip-based approach to optimize for

social proximity of nodes in the graph. The algorithm works
in two phases.

In the first phase, or initialization, the algorithm randomly
initializes the DHT overlay, without taking into account the
social structure. In the second phase, or refinement, the algo-
rithm aims at migrating the nodes in the overlay closer to their
social friends. There are various definitions of closeness in an
overlay, such as the euclidean distance in the id space, and
the number of hops in the overlay. In our work, we define a
utility function that can use either of the two definitions, i.e.,
euclidean distance or hop count. However, our algorithm is
capable of adapting to any other definition of closeness, like
round trip time or geographical proximity [17]. Similarly, there
are different ways to rank the social ties of users, e.g., mutual
friends (triangle count) [20], user interactions [1], and others.
In our work, we select the triangle count as the measure for
estimating the strength of ties. We select this metric due to its
simplicity, adaptability and decentralized nature.

The second phase of our algorithm runs in multiple itera-
tions. In each iteration, every node tries to maximize its social
awareness by performing identifier swapping with a selected
node via gossiping [21]. For peer selection, we compare
various decentralized schemes, i.e., random, direct, greedy and
smart (see section V). The peer selection schemes (inspired
from [17, 18]) are configured to take into account the social
ties. Based on an empirical study, we find the direct peer
selection scheme as a good option for selecting nodes to swap
ids. In this scheme, a node asks a direct social friend to
return his overlay finger (link/connection) for swapping. Due
to its decentralized nature, identifier swapping process can be
performed in a massively parallel way and requires only local
knowledge of graph topology (i.e., every node knows its direct
neighbors in the overlay).

After peer selection, the node evaluates the cost of swapping
its identifier with the identifier of the selected node, by looking
at its social proximity. A node adapts to a new identifier, if
the candidate’s identifier brings it closer to its social friends.
The algorithm groups similar (connected) users together in the
overlay. Therefore, nodes in a social network require fewer
steps to communicate between each other. Moreover, once
connected nodes are grouped together, they tend to stay in the
same neighborhood in the overlay. This behavior accelerates
the convergence process and reduces the number of identifier
swaps between nodes. However, nodes in the overlay require
to periodically execute the algorithm, to keep the overlay
consistent and navigable, due to nodes joining and leaving
the social network.

B. Related Work

The idea of socially-aware overlays has been previously pro-
posed in designing efficient systems while using an underlying
social graph structure [22, 23, 24]. Similarly, there are past
works proposing to improve locality-awareness in a system
in order to achieve better network latency [25, 26]. However,
OSNs are typically used for social queries, where performance
is highly improved by increasing social awareness [24, 9].

Further, for a DOSN, a nidive way to create a social
overlay is to use a structured overlay like DHT [11, 12].
However, these solutions lack social awareness, which leads
to higher communication overhead and less reliability [14].
Optimization like SPROUT [14] improves the efficiency and
reliability of structured overlays for DOSNSs.

Arranging social users in a friend-to-friend network is also
an attractive choice for implementing a DOSN [4, 5, 7, 27, 28],
and also in [24] using the primary communication layer
for social inferences. However, such services require each
user to maintain connections with all their friends, which
makes this approach unscalable and impractical for handheld
devices. Moreover, the overlay maintenance overhead can be
reduced by using an external lookup service, similar to [7].
Nevertheless, such an external service is a single point of
failure and can lead to privacy and security issues.

Safebook [8] leverages the social trust between users by
building a network of trusted peers that store OSN data. To
increase system reliability and availability, each user’s data are
replicated on trusted friends of this user. This scheme is not
scalable due to the overlay maintenance overhead.

Diaspora [29] is a super-peer based architecture, with net-
work of independent, federated servers that are administrated
by individual users. Supernova [30], proposes a similar service
using a super-peer based approach for DOSNs, where super
peers arrange themselves to provide lookup services for other
users. Such networks transfer the problem of privacy from a
central provider to anonymous servers, which increases the
risk of security breaches.

III. PRELIMINARIES

In order to design an overlay for DOSNs, one of the
major requirement is having a limited or bounded number of
connections per user (especially for hand-held devices), while
providing guarantees of deterministic and bounded reach. For
this particular reason, a DHT is one of the most optimal
choices among all the other possible solutions [7, 9, 12, 8, 29].

A. Distributed Hash Tables and Symphony

Distributed hash tables is a class of distributed systems that
can provide autonomous, efficient, fault-tolerant and scalable
lookup service. DHTs have been used in the past to pro-
vide various services, like distributed file systems, distributed
storage, domain name systems, web caching, file sharing and
content distribution systems [31, 32, 33]. We use a DHT to
provide an overlay for decentralized online social networks.
Information in a DHT is stored in the form of a key-value
pair. Any participating node in a DHT efficiently retrieves a
value associated with a given key. We select symphony [15],
due to the presence of small world characteristics [34].

In Symphony, nodes arrange themselves in a ring structure
and are assigned an identifier from a uniform identifier space
between (0,1]. Each node in Symphony maintains two links
to their immediate neighbors (predecessor and successor).
Moreover, each node maintains k additional long range links
to improve the lookup process. Long range links are created

using a probability distribution function, which guarantees the
presence of small world properties, i.e., large number of short
links and small number of long link. Symphony is a flexible,
fault tolerant, stable lookup service that provides lookup with
an average latency of O(% log N) hops.

Chord [35] is a special case of Symphony. In Chord, nodes
are arranged in the form of a ring, where each node is assigned
an identifier from an identifier space between (0,1]. Each node
maintains fingers (pointers) only for O(logN) other nodes in
the network. In Chord, long range links are created using a
function f(i) = 2¢, where i € 1,...,log N. Chord guarantees
lookup for each node in the network in O(log N) steps.

B. Embedding Social Networks via DHT Finger Rewiring

The motivation of our work relies on the fact that random
assignment of social users on a DHT does not guarantee any
social awareness [13]. The lack of social awareness results in
the participation of many potentially uninterested users (relay
nodes) in the lookup process, which leads to higher network
cost and increased security risks.

Sandberg [16] proposed an approach for embedding small
world graphs on top of a Kleinberg’s two dimensional grid
using a statistical estimation. It is a well known fact that most
of the online social networks follow the properties of small
world networks [1]. Therefore, we expect that there can be
an embedding of a social graph on an overlay like Symphony
that can improve lookup performance and reliability, without
jeopardizing the guarantees offered by the DHT.

One of the simple solutions that improves the social aware-
ness of a DHT is updating the finger table of each node in
the DHT to point to social connections. In Symphony, this can
be achieved by simple modification of the sampling function
for long distance links. Concretely, rather than sampling and
selecting a random peer, we need to sample and select a friend
(social connection) closest to that peer. This simple modifica-
tion drastically improves the social awareness compared to
the random symphony overlay, as nodes directly point to their
friends. Moreover, this approach maintains the small world
nature of the Symphony overlay, thus offering similar bounds
on the lookup calls. However, this greedy heuristic does not
provide an optimal solution, as each user in the overlay takes
a local decision of keeping their immediate friends in their
routing table.

IV. PROBLEM DEFINITION

We formulate our problem by considering an undirected
social graph G = (V, E), where V is the set of vertices and E
is the set of edges, connecting the vertices. The graph contains
|V| nodes and |E| edges, where:

E={e;=(ij):i—jand j — i}

Each node i in a graph has a neighborhood set of neighbors

defined as:

Ni:{jEVZeijEE}

The graph, G, has a static, N x N symmetric adjacency matrix
if €ij € E

A, where:
1
A”_{ 0 ife; ¢FE

Further, we define the strength of ties among users in a
social graph. We leverage the notion of number of triangles
that two nodes share in the graph to find the strength among
the two nodes. A triangle in a graph is similar to a mutual or
common friend in a social network. Therefore, we define the
strength between two nodes ¢ and j as follows:

sy = {|N1 ﬂN]‘ 11, € V}
| Ni|

Along with the social graph, each vertex v € V' from the
graph G also participates in an overlay (symphony), where
each node is assigned an identifier from an identifier space
(0,1]. This means that each node in the social graph has one-to-
one mapping to an identifier in the symphony overlay. Further,
nodes create fingers depending on the algorithm of the overlay.
For example, in symphony [15], each node creates a set of
fingers to its immediate neighbors and creates long range links
using the probability distribution function.

For a DHT, we define the distance between two nodes ¢ and
J as d;;. We define two different distance metrics: 1) euclidean
distance between the two node ids, and 2) lookup latency
(number of hops in the overlay) between the two nodes.

As each node gets an identifier from a 1-dimensional space,
the euclidean distance between node ¢ and node j with
identifiers x; and x;, respectively, is given by the absolute
distance:

(D

dij = |wi — 4]

The lookup latency between the two nodes in the DHT
overlay is calculated using the symphony routing algorithm.
The distance d;; in this case is equal to the number of
intermediary nodes a node ¢ needs to traverse to reach the
destination node j. Observe that the social strength between
users is calculated using the social graph, whereas the distance
between two nodes is extracted from the information about
their identifiers in the overlay.

A. Utility Function

We represent the problem as an embedding problem, where
we map the vertices in the social graph to DHT nodes. To
tackle the problem, each node ranks their neighbors based on
the strength of social ties. Also, each node needs to know the
information about short range and long range links.

We define two cost functions for our problem. Both cost
functions use the same minimization objective. However, they
differ in the definition of the distance between nodes, which

is parameter d;;:
minZZsij X d,‘j (2)
]

The first parameter of the cost function s;; is the strength
of ties between two nodes in a social graph. The second

parameter of the cost function d;; is the distance between
two nodes in the DHT overlay. The cost function aims at
minimizing the distance between strongly connected social
users.

At any time ¢, a node ¢ calculates the cost C;(t) to swap
node ids with another node, given its neighborhood NN;:

Ci(t) = Y sin x din(t) 3)
kEN;

This cost leverages the parameter s;;, which is a fixed
parameter that does not change overtime t, and the parameter
d;i,(t) which changes overtime, depending on the current
distance of nodes with their friends on the identifier space
at time t.

V. ALGORITHM

To solve the aforementioned problem, we utilize a gossip-
based algorithm proposed by [21]. The algorithm we propose
works in two phases: a) Initialization and b) Refinement.

A. Initialization

To initialize the algorithm, we begin by taking the input in
the form of a social graph. Each node in the graph is randomly
assigned an identifier from an identifier space (0,1]. Further,
these nodes create a DHT overlay by constructing pointers
to their immediate neighbors and by creating long range
links to other nodes in the overlay, following the symphony
protocol [15].

This phase distributes the nodes randomly in the over-
lay. The random distribution of connected nodes place them
uniformly in the identifier space, resulting in lack of social
awareness. Hence, each node in the symphony overlay tra-
verses random nodes (relay nodes) in order to reach another
node, thus allowing two social friends to communicate (in the
application layer).

B. Refinement

Refinement aims to improve social awareness in the overlay
by continuously moving the nodes in the overlay closer to
their friends. At each time instance ¢, each node locally
computes the strength and distance with other nodes and
makes local decisions if to swap his id with any of them or
not. The benefit of the local computation is two-fold. First,
it enables our algorithm to work in a distributed manner, as
it does not require a global view of the graph. Second, each
node greedily improves the social awareness by performing
lightweight operations.

Refinement works in three steps: a) node selection, b) cost
evaluation, and c) identifier exchange. First, each node selects
another node from the network under a particular selection
scheme. Observe that each node has access to two types
of nodes: social links and overlay links. Social links are
his friends in the social graph, whereas overlay links are
the immediate neighbors in the overlay. We investigate four
different approaches for node selection, where a node % first
selects another node m who provides a finger j from his table,
as a candidate to swap ids with i:

Direct: A node i selects one of his friends in the social
graph uniformly at random to be the node m.

Greedy: A node i selects its friend with strongest tie as
node m.

Smart: A node ¢ selects a node m uniformly at random
from its top k strongest friends.

After node m is selected, m selects a node j that resides in
its finger table. This node j will be the one to be considered
for swapping with ¢ if the cost function allows it, as explained
next. The intuition behind this approach is that by selecting
a finger of direct neighbor m, at each time ¢, node ¢ moves
closer to its social friends. We also compare with a random
selection scheme as a baseline.

Random: A node ¢ selects a random other node j from the
graph to swap ids. This scheme can be implemented using a
peer sampling service, similar to [36].

Second, the algorithm evaluates the cost of adapting the
identifier of node ¢ to node j. Each node uses the cost function
defined in Eq. 3 to calculate the cost of the new identifier at
time interval ¢. In particular, the algorithm calculates the cost
for both the nodes (local node and selected node) using their
old and the candidate identifiers.

Suppose, we have two nodes ¢ and j with their current cost
at time t equal to C;(t) and C(t), respectively. We define the
cost of node 7 adapting to the identifier of node j as C;;(¢). A
node i, at any time instance ¢, evaluates the identifier adaption
decision of changing its identifier to an identifier of node j at
the subsequent time instance ¢+-1, using the following decision
strategy:

Cost(t) = Ci(t) + Cy(t)
COSt(t + 1) = C,‘j(t + 1) + Cji(f + 1)

if Cost(t) > Cost(t + 1)
otherwise

“)

1 swaps ids with j
no swap

Finally, the nodes exchange their identifiers if the exchange
is resulting in minimizing the overall cost, and thus maximiz-
ing the social awareness in the system.

C. Analysis

We note that our algorithm executes in multiple rounds,
where in each round, nodes try to perform identifier exchange
to improve the social awareness in the system. The algorithm
operates greedily to optimize the cost.

The identifier exchange is a decentralized process, as each
node is capable of performing it based on local information
and by communicating with only one other node. This enables
parallel execution of the algorithm. However, the algorithm
needs to take care of conflicts: a node should only participate
at most in one gossip phase (refinement) at a time. In a
completely decentralized environment, this can be achieved
using a promise mechanism such as in the paxos protocol [37],
where each node in a gossip phase, refuses any other incoming
requests.

Due to the distributed nature of the protocol where nodes
perform local optimizations of the cost function, there are
no guarantees that the algorithm will lead to a steady state,
and how close this steady state is to the state with a global
minimum on the cost function. However, as we demonstrate in
our experimental evaluation, given real small-world graphs, the
algorithm does converge to a steady state and this state has
improved properties with respect to communication latency
and reliability.

D. Dealing with Failures

Social overlays are sensitive to churn and might encounter
non-negligible delays for various OSN services [38]. There-
fore, a DOSN solution should successfully cope with different
types of failures and churn.

Social graphs have been found to evolve in a linear fash-
ion [39]. This allows a DOSN overlay to adapt to evolving
trends in the graph. A hybrid overlay on top of a social graph
requires any changes in the social graph to be reflected in
the overlay. Therefore, in order to make the overlay consistent
and navigable, nodes in the overlay need to periodically update
their pointers.

Similarly, instability in the overlay can be caused due to
mobility or inactivity of peers, and peer or network failure.
Such temporary node failures can be handled by: a) using
data replication on external data sources or other nodes in the
network [27], b) providing guarantees for eventual consistency,
and c) assuming socio-incentivized networks, where peers
keep their computers online as much as possible to help their
friends [24].

Our approach naturally captures and adapts to the changes in
the social graph through the gossiping process and appropriate
cost functions associated with it. The temporary node failures
are expected to be handled by the inherited techniques from the
structured overlay maintenance schemes which our proposed
technique has to be built on (e.g., ring stabilization of DHTs,
etc.).

VI. EVALUATION

In this section we describe the experimental evaluation
performed to assess the gains of the proposed algorithm when
compared to a symphony overlay.

A. Experimental Setup

We evaluate our proposed solution for socially-aware DHT
through simulations with real datasets.

1) Experimental Questions: In our experimental evaluation
we investigate different questions regarding the proposed
algorithm:

Q1: What is the tuning cost of the algorithm?

Q2: How does node ordering impact algorithm convergence?
Q3: What are the performance gains with respect to lookup
latency and reliability?

Q4: How robust is the algorithm to graph clustering?

Frequency Distribution

100 L L L L
1 10 100 1000 10000

Node Identifier

100000

Fig. 2: Degree distribution of datasets used in the experiments.

2) Algorithm Initialization: We use Symphony as an under-
lying overlay and optimize the social awareness of the overlay
using the gossip-based algorithm. For symphony, we fix the
k = log(N), where k is the number of long range links that
each node maintains within the overlay [15]. This means that
each node in the overlay maintains 2(1+%) connections (direct
neighbors, k£ outgoing links, and %k incoming links).

3) Performance Metrics: In our experiments we assess
the performance gains of the algorithm by measuring three
metrics: 1) latency in the overlay to reach a direct friend
in the graph, expressed in average number of overlay hops,
computed across all pairs of friends, 2) migration cost (the
ratio of number of identifier exchanges over number of gossip
attempts), and 3) reliability of the system with respect to how
many friends a node can access directly in one hop [14]. We
define the reliability of the algorithm in two ways: 1) how
many direct friends occupy the finger table, and 2) the total
number of n-hop friends in the finger table.

4) Datasets: Table I shows the datasets used in the experi-
ments. These datasets' are chosen to impose real-world social
networks link distributions on top of the overlay. Figure 2
shows the degree distribution of these social graphs.

TABLE I: Summary of the datasets used in the experiments. AD stands
for average degree and ACC stands for average clustering coefficient.

Dataset Symbol Nodes Edges AD ACC
Facebook FB 4039 88234 42 0.6055
Wiki-Vote WV 7115 201524 28 0.1409
Slashdot SD 77360 1015667 13 0.0555
Twitter ™ 81306 2484794 32 0.5653
Symphony SY 10000 279959 28 0.043

B. Experimental Results

Q1: We perform experiments to evaluate the cost of tuning
the algorithm. In particular, we evaluate the cost of a) node

Uhttp://snap.stanford.edu/data/index.html

selection, b) migration cost, and c) convergence time.

In the first experiment, we compare different ways to
select a node. We perform experiments comparing four node
selection approaches that were discussed in section V. In
this experiment, we use the FB dataset. Initially, nodes are
placed in the overlay, by randomly mapping social users to
Symphony nodes. Next, we execute the gossip algorithm, for
1000 iterations with the goal of minimizing the number of
hops. We observe the improvement in terms of lookup latency.

Figure 3 shows the performance in terms of lookup latency
for different node selection schemes. The plot contains a
label for symphony that represents the starting point of the
algorithm.

Performance
5 T T T T
Random Neighbor ~ +
Direct Neighbor
Greedy Neighbor
45 Smart Neighbor o
>
3 !
c
Q
5
o 4r b
=}
X
o
o
-
35

3
0 100 200 300 400 500 600 700 800 900
Number of iterations

1000

Fig. 3: Comparison of different node selection schemes (random, direct,
greedy, smart) with the original symphony based overlay. Lookup
latencies are measured in terms of number of hops along the path
to the destination node. The cost function used in this experiment
attempts to minimize the number of hops.

Results show that the greedy node selection has the fastest
convergence time. However, it provides minimal improve-
ments with respect to lookup latency. This is due to the fact
that in greedy selection, each node selects only one neighbor
to gossip with and this reduced freedom has an impact in the
overall converged state.

The other three approaches, i.e., random, direct and smart
selection, achieve better improvements in the performance
of the overlay. However, random peer selection scheme is
expected to lead to higher communication cost to find a node
to start the gossiping phase, than the direct neighbor approach.
Therefore, we use the direct selection scheme for further
experiments, as it provides nearly similar results as the random
scheme but it affects only direct friends’ node ids instead of
random ids.

In the second experiment, we compare the migration cost of
the keys. Fraction of migration cost of the algorithm represents
the number of identifiers exchanged between nodes over the
attempted gossip actions. In this experiment, we only report
the migration cost, when two nodes decide to swap their
identifiers. Therefore, we ignore the cost of communication

in case nodes decide not to swap their identifiers.

Figure 4 represents the migration cost of the algorithm, for
two different cost functions, i.e., minimizing the number of
hops and minimizing the euclidean distance. Results show that
both utility functions require similar migration cost. Moreover,
we observe low migration cost for the algorithm to achieve
the improved performance observed in the previous result.
Based on the similarity in the cost and performance gain
results, in the subsequent experiments we select the utility
function of minimizing the euclidean distance due to it’s
simple decentralized nature.

Migration Cost
1 T T T T

Minimizing Hop Distance -+
Minimizing Euclidean Distance

©
o

o
o
=2

Fraction of Migration Cost

0001 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Number of Iterations

Fig. 4 Comparison of two different utility functions for the migration
cost of the algorithm.

In the third experiment, we observe the convergence time
of the algorithm, both in terms of migration cost and lookup
latency. Figure 5 presents these results. We observe that we
achieve 30% improvement in lookup latency by moving only
10% of the nodes in the overlay. Whereas, if we let the
algorithm to run for a longer period, the average lookup
latency improves to about 3.2 hops. This gain is achieved by
only moving few nodes in the overlay. Another insight that
we gain from this experiment is that very few nodes tend to
move or exchange their identifiers: they quickly enter into a
comfortable region in the overlay and stabilize their swaps.

Q2: As our algorithm is decentralized, each node in the
overlay is capable of executing the algorithm on their own
time. An approach that mimics a realistic setting is to allow
random nodes to perform the algorithm, i.e., initialization
phase and refinement.

Other, more complicated techniques can first order nodes
based on their degree centrality, which indicates importance
in the network, and then use this order to select the next node
to perform the algorithm. On the one hand, top degree nodes
are more important in the network and can affect many nodes
in the overlay at once, thus, affecting its speed of convergence
(could be faster, or may lead to oscillations). On the other
hand, bottom degree nodes are more periphery nodes and may
allow slower, but steadier, convergence.

Convergence Time

4.6 T T T T T T T T 0.4
Lookup Latency ———
sl Migration Cost 1 035
|] b7}
42 198 8
> \
g \ o025 §
o AN 1 g
2
2 AN 102 5
> N \ m u—
2 38 N Toss 8
S AN : S
i 2 i ©
3.6 \ 1 0.1 E
3.4 r _\‘\: 0.05
32 1 1 1 1 1 1 L i 1

0
0 100 200 300 400 500 600 700 800 900 1000
Number of Iterations

Fig. 5: Performance gain and migration cost of algorithm. Higher
lookup gains come with higher migration cost.

Such techniques are not easy to implement in a decen-
tralized system: either a centralized service can provide the
degree centrality ranking, or a decentralized service is needed
to estimate global ranking. However, such rankings are not
easy to acquire in a decentralized setting; partial rankings can
also be computed to elect nodes to start the algorithm.

We experiment with three different techniques to investigate
if the additional complexity required by such techniques is
granted with any additional performance gains. In particular,
we compare executions in a) descending order (starting from
highest degree node), b) random order (through direct peer
selection), and c) ascending order (starting from lowest degree
node). Figure 6 and Figure 7 show the performance gains
and migration cost of the three approaches. Compared to
the direct peer selection scheme, ordering of nodes leads to
faster convergence with lower migration cost, pointing to an
interesting future direction of research.

Q3: In this experiment, we evaluate the performance gain,
i.e., lookup latency and reliability. We run experiments for
500 iterations using different datasets (FB, WV, SD, TW).
Based on previous results, we use the direct peer selection
and the utility function of minimizing the euclidean distance.
In the first experiment, we report the lookup latency for
the symphony overlay and an overlay that is generated after
running our algorithm. The lookup latency represents the
average communication hops that a node requires to lookup for
their friends. Figure 8 shows the different performance gains in
latency for different datasets. FB, WV, and TW datasets have
higher gain in lookup latency compared to SD. This behavior
can be attributed to the low clustering in the SD dataset,
which results in ambiguous segregation between social ties.
Moreover, the average degree in SD dataset is lower compared
to other datasets, which gives less freedom of choice using
the direct peer selection scheme, resulting in lower gains in
performance.

In the next experiment, we measure the reliability in the
form of average gain. We define two different metrics for

Performance

Déscending Order +
Direct Peer Sampling =
Ascending Order

Lookup Latency

3 L L L L L L L L L
50 100 150 200 250 300 350 400 450 500

Number of iterations

Fig. 6: Performance gains of three execution node orderings: a)
descending order (execution starts from high degree nodes), b) direct
peer selection, and c¢) ascending order (execution starts from low
degree nodes).

Fraction of Nodes Swapping Identifiers

Déscending Order
Direct Peer Sampling =
Ascending Order *

Fraction of Migration Cost
o
n

150 200 250 300 350 400
Number of Iterations

450

50 100 500

Fig. 7: Migration cost of three execution node orderings: a) descending
order (execution starts from high degree nodes), b) direct peer
selection, and c) ascending order (execution starts from low degree
nodes).

average gain and perform experiments to measure both metrics
using different datasets. First metric calculates the reliability
in terms of the finger table, which is given by the percentage
of 1-hop friends versus the total number of fingers per node
in the overlay:

of friends in the finger table

reliability, % = 7 of fingers

Figure 9 compares the reliability; metric for a random
symphony overlay and our approach. In this experiment, we
run our algorithm for 500 iterations using multiple datasets.
Results show high reliability gain in terms of the finger tables.
For instance, for FB, using random symphony overlay about
1% of friends on average are in the finger table, whereas after
running our algorithm, we have nearly 10% of the fingers

Symphony R
Direct oesmmm |

6.5

Lookup Latency

R 2 % Y

Fig. 8: Comparison of lookup latency using random and the gossip
based overlay for different datasets.

pointing to direct friends.

10

Symphony EzzER
Direct s

Reliability: %

o
o

0.01

Fig. 9: Comparison of gain in reliability between symphony overlay
and our approach using multiple datasets.

Second metric evaluates the reliability in terms of social
friends. This is given by the percentage of 1-hop social
friends positioned in the i-hop distance in the overlay, with
i€ {1,2,3}

of friends in i-hop in overlay
of friends

Figure 10 compares the reliability, metric for a random
symphony overlay and our algorithm. In this experiment, we
run our algorithm for 500 iterations using multiple datasets.
We observe a significant increase in the amount of social
friends in 1-hop, 2-hop and 3-hop, from the symphony overlay
to an overlay that is generated after running our algorithm.
Therefore, we conclude that our algorithm is capable of
placing users and their friends closer in the overlay with better
lookup guarantees. The gain in reliability enables using social
friends in a more trustworthy lookup process.

Q4: In this experiment, we study the robustness of the
algorithm with respect to the clustering of the social graph.
In order to study this aspect of the algorithm, we begin by
creating a symphony overlay with 10000 nodes [15]. We
extract the fingers per node and construct a graph from these
edges (step 1). Then, we run our algorithm (step 2), that first
initializes the new overlay by randomly assigning nodes from

reliabilitys% =

100

1-hop
2-hop
3-hop

—_
o

Reliability: %

0.1

Fig. 10: Comparison of gain in reliability in terms of increase in 1-hop,
2-hop and 3-hop neighbors for multiple datasets.

4 T T T T L T T T T
Direct+Triangle Count +
Direct+Euclidean Distance
35 1 Symphony - 1
Ideal
3+]
>
o
C
Q
5
o 2+]
=}
$
o 15 1
—
1
0.5]
0 1 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500

Number of Iteration

Fig. 11: Using the algorithm to relabel a symphony overlay. Compari-
son between different algorithm related parameters.

step 1 in the new DHT, and then refining their position in the
new overlay by moving them closer to their neighborhoods
from step 1. The goal of this experiment is to measure how
close we can move the nodes in the new overlay, to recreate
the graph constructed from step 1 that comes with bounded
latency of 1-hop.

In general, a symphony overlay from step 1 is expected
to have lower number of triangles. Therefore, triangle count
might not be a good parameter to estimate the strength between
nodes. For such datasets with lower number of triangles, we
need to rely on other parameters for social strength, like
round trip time between nodes. For this reason, we mimic the
strength of ties using euclidean distance between node ids.

Figure 11 shows the comparison of these two strategies
(direct+triangle count and direct+euclidean distance). For ref-
erence, the plot also has a line for the ideal latency of 1-
hop from step 1, and a line for the random overlay at the
beginning of step 2. We achieve 22% gain in latency compared
to the Symphony lookup latency at the beginning of step
2. Moreover, we observe a minor improvement using the
euclidean distance as definition for strength between nodes.

VII. CONCLUSION

In our work, we proposed a socially-aware distributed hash
table for decentralized online social networks. In particular,
we presented a gossip-based algorithm to place social users in
a DHT, while maximizing the social-awareness among social
users. Furthermore, we perform several experiments with real
graphs to evaluate the improvements of our proposal with
respect to host access latency reduction and reliability im-
provements. We believe that this approach will enable efficient
and scalable implementation of various DOSN services.

There are various decentralized online social network ser-
vices that benefit from the socially-aware distributed hash
tables. Such overlays ensure that users in social network reside
“close” to their friends. The applications that take immediate
benefits from these improvements include information dissem-
ination, distributed storage, fault tolerance, publish/subscribe
and others.

For example, information dissemination using socially-
aware DHTs requires fewer hops for users to reach their
friends in the overlay. As shown in [14], friends of users are
more likely to deliver or forward their messages compared to
random nodes. With our method, many of the friends can re-
side nearby in the overlay and thus, the overall communication
cost can be decreased and the reliability of the system can be
improved. Furthermore, in a friend-to-friend storage system,
the store and access latency of the data can be improved: fewer
hops in the data transfers can mitigate connection failures and
offer an overall faster service.

VIII. ACKNOWLEDGMENT

This work is supported by iSocial EU Marie Curie ITN
project (FP7-PEOPLE-2012-ITN). We would also like to thank
all the anonymous reviewers for their constructive feedback.

IX. REFERENCES

[1] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida,
“Characterizing user behavior in online social networks,” in
SIGCOMM. ACM, 2009, pp. 49-62.

[2] B. Debatin, J. P. Lovejoy, A.-K. Horn, and B. N. Hughes,
“Facebook and online privacy: Attitudes, behaviors, and
unintended consequences,” Journal of Computer-Mediated
Communication, vol. 15, no. 1, pp. 83-108, 2009.

[3] C. Dwyer, “Privacy in the age of google and facebook,”
Technology and Society Magazine, IEEE, vol. 30, no. 3, pp.
58-63, 2011.

[4] D. Koll, J. Li, and X. Fu, “Soup: an online social network by
the people, for the people,” in SIGCOMM. ACM, 2014, pp.
143-144.

[5] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia,
“Cachet: a decentralized architecture for privacy preserving
social networking with caching,” in CoNEXT. ACM, 2012,
pp- 337-348.

[6] P. Kapanipathi, J. Anaya, A. Sheth, B. Slatkin, and A. Passant,
“Privacy-aware and scalable content dissemination in
distributed social networks,” in The Semantic Web—ISWC.
Springer, 2011, pp. 157-172.

[7] S. Buchegger, D. Schioberg, L.-H. Vu, and A. Datta,
“Peerson: P2p social networking: early experiences and
insights,” in EuroSys Workshop. ACM, 2009, pp. 46-52.

(8]

(9]

(10]

(11]

[12]

[13]

[14]

(15]
(16]

[17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

(26]

[27]

L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A
privacy-preserving online social network leveraging on
real-life trust,” Communications Magazine, IEEE, vol. 47,

no. 12, pp. 94-101, 2009.

N. Kourtellis, J. Finnis, P. Anderson, J. Blackburn, C. Borcea,
and A. lamnitchi, “Prometheus: User-controlled p2p social
data management for socially-aware applications,” in
Middleware. Springer-Verlag, 2010, pp. 212-231.

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A
survey and comparison of peer-to-peer overlay network
schemes,” Communications Surveys & Tutorials, IEEE, vol. 7,
no. 2, pp. 72-93, 2005.

S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia,
“Decent: A decentralized architecture for enforcing privacy in
online social networks,” in PERCOM. 1EEE, 2012, pp.
326-332.

A. Shakimov, H. Lim, R. Caceres, L. P. Cox, K. Li, D. Liu,
and A. Varshavsky, “Vis-a-vis: Privacy-preserving online
social networking via virtual individual servers,” in
COMSNETS. IEEE, 2011, pp. 1-10.

N. Kourtellis and A. Iamnitchi, “Leveraging peer centrality in
the designof socially-informed peer-to-peer systems,” IPDPS,
vol. 25, no. 9, pp. 2364-2374, Sept 2014.

S. Marti, P. Ganesan, and H. Garcia-Molina, “Dht routing
using social links,” in Peer-to-Peer Systems III. Springer,
2005, pp. 100-111.

G. S. Manku, M. Bawa, P. Raghavan et al., “Symphony:
Distributed hashing in a small world.” in USITS, 2003, p. 10.
O. Sandberg, “Distributed routing in small-world networks.” in
ALENEX. SIAM, 2006, pp. 144-155.

M. Jelasity, A. Montresor, and O. Babaoglu, “T-man:
Gossip-based fast overlay topology construction,” Computer
networks, vol. 53, no. 13, pp. 2321-2339, 2009.

S. Voulgaris and M. Van Steen, “Epidemic-style management
of semantic overlays for content-based searching,” in
Euro-Par. Springer, 2005, pp. 1143-1152.

I. Gupta, K. Birman, P. Linga, A. Demers, and

R. Van Renesse, “Kelips: Building an efficient and stable p2p
dht through increased memory and background overhead,” in
Peer-to-Peer Systems II. ~ Springer, 2003, pp. 160-1609.

A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L.
Larriba-Pey, “Shaping communities out of triangles,” in
CIKM. ACM, 2012, pp. 1677-1681.

M. A. U. Nasir, F. Rahimian, and S. Girdzijauskas,
“Gossip-based partitioning and replication for online social
networks,” in ASONAM. 1EEE, 2014, pp. 33-42.

B. Liu, Y. Cui, Y. Lu, and Y. Xue, “Locality-awareness in
bittorrent-like p2p applications,” Multimedia, IEEE
Transactions on, vol. 11, no. 3, pp. 361-371, 2009.

D. Ciullo, M. A. Garcia, A. Horvath, E. Leonardi, M. Mellia,
D. Rossi, M. Telek, and P. Veglia, “Network awareness of p2p
live streaming applications: a measurement study,” Multimedia,
IEEE Transactions on, vol. 12, no. 1, pp. 54-63, 2010.

N. Kourtellis, J. Blackburn, C. Borcea, and A. Iamnitchi,
“Special issue on foundations of social computing: Enabling
social applications via decentralized social data management,”
TOIT, vol. 15, no. 1, p. 1, 2015.

T. Qiu, G. Chen, M. Ye, E. Chan, and B. Y. Zhao, “Towards
location-aware topology in both unstructured and structured
p2p systems,” in ICPP. 1EEE, 2007, pp. 30-30.

A. C. Resmi and F. Taiani, “Fluidify: Decentralized overlay
deployment in a multi-cloud world,” in DAIS. Springer,
2015, pp. 1-15.

A. Shakimov, A. Varshavsky, L. P. Cox, and R. Ciceres,
“Privacy, cost, and availability tradeoffs in decentralized osns,”

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

in SIGCOMM Workshop. ACM, 2009, pp. 13-18.

S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal,
S. K. Teh, R. Chu, B. Dodson, and M. S. Lam, “Prpl: a
decentralized social networking infrastructure,” in MCS.
ACM, 2010, p. 8.

A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and

H. Zhang, “The growth of diaspora-a decentralized online
social network in the wild,” in INFOCOM WKSHPS. IEEE,
2012, pp. 13-18.

R. Sharma and A. Datta, “Supernova: Super-peers based
architecture for decentralized online social networks,” in
COMSNETS. 1EEE, 2012, pp. 1-10.

A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” ACM SIGOPS, vol. 44, no. 2, pp.
3540, 2010.

B. Cohen, “The bittorrent protocol specification,” 2008.

A. Oram, Peer-to-peer: harnessing the benefits of a disruptive
technology. O’Reilly Media, Inc.”, 2001.

J. Kleinberg, “The small-world phenomenon: An algorithmic
perspective,” in Proceedings of the thirty-second annual ACM
symposium on Theory of computing. ACM, 2000, pp.
163-170.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” SIGCOMM, vol. 31, no. 4,
pp. 149-160, 2001.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. Van Steen, “Gossip-based peer sampling,” TOCS, vol. 25,
no. 3, p. 8, 2007.

L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18-25, 2001.

G. Mega, A. Montresor, and G. P. Picco, “On churn and
communication delays in social overlays,” in P2P. IEEE,
2012, pp. 214-224.

R. Kumar, J. Novak, and A. Tomkins, “Structure and
evolution of online social networks,” in Link mining: models,
algorithms, and applications. Springer, 2010, pp. 337-357.

