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Abstract—The problem of automated personalised news rec-
ommendation, often referred as auto-scoring has attracted sub-
stantial research throughout the last decade in multiple domains
such as data mining and machine learning, computer systems,
e-commerce and sociology. A typical recommender systems ap-
proach to solving this problem usually adopts content-based
scoring, collaborative filtering or more often a hybrid approach.
Due to their special nature, news articles introduce further
challenges and constraints to conventional item recommendation
problems, characterised by short lifetime and rapid popularity
trends. In this survey, we provide an overview of the challenges
and current solutions in news personalisation and ranking from
both an algorithmic and system design perspective; and present
our evaluation of the most representative scoring algorithms
while also exploring the benefits of using a hybrid approach.
Our evaluation is based on a real-life case study in news
recommendations.

Index Terms—Auto-scoring; recommender systems; scoring
algorithms; data mining; machine learning

I. INTRODUCTION

The online web serves today as the main resource provider

for live news articles with an increasing rate of tens of

thousands of articles per hour. Individual users of the web

throughout the world are identically different and have the

need to get exposed both to news that are mostly relevant to

their interests but also important throughout the communities

they are members of. The problem of automated personalised

news recommendation (often referred with the term “auto-

scoring”) and its underlying challenges have attracted substan-

tial research throughout the last decade in multiple domains

such as data mining and machine learning, computer systems,

e-commerce and sociology. Various techniques and tools have

been investigated in both academic studies and industrial use

cases, each of them tackling specific challenges.

A typical recommender systems approach to solving this

problem usually adopts content-based scoring, collaborative
filtering algorithms or more often a hybrid approach. Content-
based scoring scores articles based on features extracted

from their content that best match user profiles assembled

individually per user or user group. Collaborative filtering on

the other hand focuses solely on the users’ explicit ratings

or implicit actions to associate them with similar users and

provide article recommendations based on such similarities.

Due to their special nature, news articles introduce further

challenges and constraints to conventional item recommen-

dation problems, characterised by short lifetime and rapid

popularity trends. It is therefore often important to be able

to score news based on their predicted lifetime and popularity

in order to feed users with important information as early as

possible. Expected lifetime can also be beneficial for technical

purposes such as backend cache invalidation strategies of

article data. Finally, due to the vast amount of user generated

content in the web, the quality of articles should also be

considered in order to provide high quality recommendations.

For that purpose several classifiers have been considered that

evaluate the quality of articles that can further aid scoring.

In this survey, we provide an overview of the challenges

and current solutions to news personalisation and ranking from

both an algorithmic and system design perspective; and present

our evaluation of the most representative scoring algorithms

along with their alternatives while also exploring the benefits

of using a hybrid approach. Our evaluation is based on a real-

life case study in news recommendations.

A. News Recommendations: Requirements and Challenges

The problem of news recommendations introduces addi-

tional challenges to traditional recommender systems. Below

we enumerate some of the major challenges that we believe

make news recommender systems a special case on its own.

Short Lifetime: Most news articles are items that are of

interest for consumption throughout roughly 24 hours. Old

articles are in most cases not considered “news” anytime after.

A news recommendation system should therefore categorise

and recommend articles in a short-term basis compared to a

movie recommendation system for example where items can

be cached, recommended and consumed for decades.

Rapid Popularity Trends: News can follow extremely rapid

popularity trends. For example, upon the wedding or death

of a celebrity millions of clicks involving relevant articles

could be produced within an hour. That signifies that a news

recommender system should detect such trends in time in order

to recommend users the “hot” topics and articles as early as

possible.

Lifetime Decay: An orthogonal problem to popularity predic-

tion in news articles is to also be able to predict their lifetime

that is the amount of time certain articles might gather user

attention. There are cases of articles that attract users long
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Fig. 1: An Overview of Recommender Systems

after their creation, perhaps some big news that are not time-

sensitive such as the invention of a new system or device. Life

decay can be useful not only for recommendations but also for

caching strategies at the backend of a recommendation system.

Locality Awareness: Many articles are only interesting

to a class of users that are locally collocated, such as an

extreme weather report for Stockholm. Furthermore, users that

are topologically collocated often express similar interests.

A recommendation system should be able to classify users

by their location and expose them to potential crucial and

location-specific news articles.

Article Quality: The web is full of sources of articles from

well-known publishers to popular independent user blogs, thus,

the quality of articles might vary significantly. A recommender

system should evaluate and also regard the article quality in

any of its recommendation strategies.

Serendipitous Discovery: Over-personalisation is generally

not good when it comes to news articles. Studies [18], [13]

show that users are interested in unexpected news of categories

that might not necessarily fall into their favoured topics. Thus,

a news scoring algorithm should take into consideration this

property, often called “serendipitous discovery” to make news

recommendation more interesting and relatively unexpected to

users.

II. RECOMMENDER SYSTEMS: AN OVERVIEW

Recommender systems are smart systems that expose items

to users based on their expectations that can be either reflected

through their past history and interests or based on what

other users prefer as a whole. These two main directions

in recommender systems are also known as Content-Based
Filtering and Collaborative Filtering. In Fig. 1 we present all

known types of recommenders in a single hierarchy.

Content-Based Filtering focuses on modelling user interests

and filtering items that fall into the preferred categories for

each individual user. Most traditional approaches to recom-

mendations fall into this category and their origins come from

retrieval systems theory and artificial intelligence. Collabora-
tive Filtering on the other hand is a more modern approach

that is based on the assumption that a recommender system

is being used by thousands or millions of users so that usage

patterns can be extracted from their actions. Usage patterns

can be retrieved implicitly from simple actions such as clicks
or from explicit user actions such as item ratings.
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Fig. 2: Content Based Recommendation System Overview

In next sections, we will focus on techniques falling on each

of these two categories and explain in more detail the main

concepts and algorithms used today.

III. CONTENT-BASED FILTERING

A. Overview

One of the main and oldest paradigms in recommendation

systems is to offer users items based on their past preferences.

The main idea behind it is to first build an interest profile per

user that can be later “matched” with candidate items, one by

one and in terms of fitness. This type of information filtering is

often called content-based filtering since all internal attributes

of an item are considered for matching with the respective user

profile attributes. Thus, a basic, often expensive requirement is

to analyse the content of such items and extract a feature vector

for each. Additionally, it is required to incrementally learn
each user’s profile by logging their actions and preferences

throughout the usage of the recommendation system. An

overview of a content-based recommender system can be seen

in Fig. 2.

There we can identify the following three main compo-

nents: The Content Analyzer, the Profile Builder and an Item
Matcher. Additionally, we can see three types of data, the Item
Data which consist of items along with their corresponding

feature matrices, User Profiles which is a collection of stored

user profile attributes for each individual user in the system.

Finally, User Actions consist of all individual user actions

logged throughout the system’s life. In more detail:

• Content Analyzer: Raw items can be anything from

news articles to sale products or movies. A content

Analyzer’s role is to analyze the content of such items and

extract all relevant features in a structured representation.

For example, news article items text analysis would result

in a feature vector with tagged features such as topic,
source, body length, title length, number of pictures etc..

• Profile Builder: The role of the profile builder is to

analyse user actions such as clicks, ratings or likes logged

by the live production system by applying machine learn-

ing techniques to create a user model for each user. In

the above example, the profile builder should be able

to infer the degree each user prefers long article titles,

each specific topic or many pictures and store each such

measure in a vector. Profile building is usually done

offline resulting in an updated profile per user.
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• Item Matcher: This component usually runs live in

production on any recommender system and its role is to

“match” user profiles to item features matrices in order

to infer the degree of fitness of each item to the user. The

result of the item matcher can often be an ordered list of

items scored by their fitness to a user’s profile.

We show well-known algorithms and techniques associated

with each component of content-based recommendation.

B. Content Analysis

The core model in content analysis is the vector space
model. Based on this model a document collection, such as

a collection of articles, is represented by a document set D =
{d1, d2, . . . , dn} and a set of k terms T = {t1, t2, . . . , tk},
often called the term dictionary. The dictionary terms can

be fixed keywords associated with text analysis, entities or

any type of terms that can be extracted from documents

e.g. by applying pattern matching techniques. Each document

di is represented in the vector space model as a vector

di = {w1i, w2i, . . . , wki} where each wli represents the a

weight of term tl in document di.

Assigning weight terms in documents, especially text doc-

uments is a highly researched topic since it is the basic

measure used for similarity metrics and retrieval. A dominant

scheme for weighting terms in documents is known as Term
Frequency-Inverse Document Frequency (TF − IDF ). As its

name hints two statistics are considered to weight individual

terms, the term frequency tf(t, d) and the inverse document
frequency idf(t,D):

tfidf(t, d,D) = tf(t, d) · idf(t,D)

The term frequency measures the frequency of term t in a

document d. In its simplest form tf(t, d) = f(t, d) where

f(t, d) is the raw frequency of term t in d, however the

normalised frequency is generally preferable to minimise the

frequency bias in long documents against the maximum of all

term frequencies in the same document as such:

tf(t, d) =
f(t, d)

max{f(w, d) : w ∈ d}

The inverse document frequency measures the information
gain of each term t throughout the document set D, also

known as “term specificity” and is expressed as the logarith-

mically scaled fraction of documents in the set that include

each term as such:

idf(t,D) = log
n

|{d ∈ D : t ∈ d}|

where n is the number of documents in the set and |{d ∈
D : t ∈ d}| denotes the number of documents in the set that

term t appears at least once.

C. User Profiling

The most interesting part of content-based filtering is cre-

ating user profiles. Based on the vector space model a User

Profiling component should create a content-based profile per

user represented as a weighted feature vector where weights

signify the amount a user potentially “likes” each feature.

Several techniques used for profiling aim to infer feature

weights from individual content vectors generated through user

actions. Machine learning techniques are usually applied for

such tasks such as Bayesian classifiers or Cluster Analysis to

“train” each user’s preference model from their past actions. A

more simplified way for modelling user interests is as a set of

disjoint categories or topics C = {clike, cdislike}. The problem

of document recommendations can be therefore reduced to

binary classification by first estimating the main topic c a

document d belongs into and then recommending it to the

user if c ∈ clike.

1) Probabilistic modelling of User Interests: Document

classification can be achieved by different types of classifiers.

Naive Bayes are a simple class of classifiers that build a

probabilistic model based on a given sample, also known

as training data. Thus, with inductive learning Naive Bayes

classifiers can estimate P (c|d), that is the probability of a

given document d to belong to topic c, as
P (c)P (d|c)

P (d) .

The conditional probability P (d|c) cannot be computed per

se since documents are unique, however, we can overcome this

limitation in the vector space model taken that a document

is represented by a feature vector. By making the naive
assumption that the occurrence of tokens is conditionally
independent given class c the naive Bayes approximation of

P (c|d) can be re-stated as follows.

P (ck|d) = P (ck)
∏
t∈Vd

P (t|ck)

2) Relevance Feedback and Refinement: Another approach

is to use user feedback in order to refine user recommenda-

tions, a technique known as relevance feedback. This approach

originates from information retrieval systems, namely the

SMART system [23] which employed Rocchio’s algorithm
and is based on the assumption that users are aware of

their information needs and can evaluate results back to the

recommendation system that can therefore refine future results.

There are various variations considered, however, the gen-

eral idea stays the same. According to Roccio’s algorithm
user profiles are classifiers synthesised in a linear way in the

vector space model. Classifiers can be built either for the whole

user profile or for each topic or class per se. Upon the usage

of the system the user can classify documents as related or

non-related resulting to the two documents sets Dr and Dnr.

Thus, the problem of measuring the relevance of a document

d to a category ci ∈ C is reduced to building a classifier
−→ci =< w1i, w2i, . . . , w|T |i > where T is the set of terms

and each wij represents a weight of term tj ∈ V to class

ci ∈ C. The weight of each term can be computed as a linear
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combination of the mean term weight vectors (e.g. using TF-

IDF measures as weights) of the document sets Dr and Dnr:

wki = rpos ·
∑

dj∈Dr

wkj

|Dr|
− rneg ·

∑
dj∈Dnr

wkj

|Dnr|

The weights rpos and rneg are used for controlling the

modified vector towards being more sensitive to either negative

or positive user feedback.

We can build one classifier per profile and measure the

similarity of each document to the profile vector as a means

of scoring documents directly to user profiles. In the case of

assigning classes to documents we can pick the class with

the highest similarity cd = argmaxcisim−→d ,−→ci . In its testing

phase the Roccio’s classifier resembles clustering techniques

(e.g. nearest neighbour or nearest centroid) where we assign

a given document the label of the class whose samples’

mean is closest. The difference in the training phase is the

users’ contribution to incrementally build positive and negative

document sets. This technique has been used in several news

recommender systems, e.g. Newsfeeder and Fab [21], [3].

D. Item Matching

The basic requirement for matching items expressed in the

vector space model is to consider a basic similarity measure
between items as a distance metric. As stated earlier both

items and user profiles are expressed as feature vectors, thus,

the “closeness” between items should consider the amount

of matches between such features. A widely used similarity

metric is the cosine similarity since it measures the cosine of

the angle between two vectors A and B:

simA,B = cos(θ)A,B =
A ·B
‖A‖‖B‖

Such a similarity metric can be applied for example between

a document and a user profile feature vector. Similar measures

are the Sørensen-Dice similarity and Jaccard coefficient:

dicesimA,B = 2
|A ·B|
|A|2|B|2

jacsimA,B =
dicesimA,B

(2− dicesimA,B)

E. A Use-Case of Content-Based Filtering

One of the most direct actions used for building profiles are

the users’ clicks. A use case of such an approach is the strategy

of Google News [19] which employed a click-based strategy

to predict the distribution of clicks between different topics for

each user. Google’s recommendation system for news makes

use of both the history of user clicks and the general click

distribution in the geographical area of the user. That is due

to the fact that user interests are constantly changing and the

their respective click distributions are influenced by the local

news trends. For example, in Spain a significant number of

users might look for news related to sports during the euro

cup even when some of them are not generally interested in

them.

User actions considered by the recommendation system as

feedback are mainly their clicks which are translated as a pos-

itive vote for the category each click belongs to. Given a fixed

predefined set of article categories C = {c1, c2, . . . , cn} the

system logs for each user, one can determine their respective

click distribution per topic in every period t as follows.

D(u, t) =

(
N1

Ntotal
,

N2

Ntotal
, . . . ,

Nn

Ntotal

)

where Ntotal =
∑

i Ni. The same metric is also logged on

each period per location denoted as D(t). The predicted future

click distributions per user are therefore computed in three

steps:

1) The system computes each users current genuine news
interests regardless of the news trend, from their past

click distributions;

2) Each user’s general genuine news interests model is

being updated (incrementally) to reflect any recent

changes;

3) The users’ near future predicted interests are being

computed by combining their general genuine news

interests and the current news trend in their location.

The genuine interest of a user in topic category ci over a

time is modelled as the probability of the user clicking on

an article from that category. Since article recommendation

can be based on the predicted behaviour of each individual

user in the near future the final step is to predict the click
distribution of a user in the next time period, e.g. one hour.

This method has being reported to work well in combination

with a collaborative filtering approach since it can be applied

to rather new articles without the need for gathering significant

user clicks to be accurate. It can also optimised in terms of

performance by applying only incremental updates of the final

interest model by incrementally adding only each period’s

genuine user interest classifier to the total classifier.

F. Applications and Limitations

Content-Based Filtering is one of the most fundamental

approaches to item recommendations. It is still considered

today a crucial part of any recommender system since it deals

well with the first-rater problem, thus, it can give value to

bootstraping recommender system with no significant user ac-

tivity. Especially in cases where new items are published with

a high rate, a content-based algorithm can still offer them as

accurate recommendations to users without the need to gather

user actions in extended time periods. However, content-based

filtering comes with a high cost of profiling individual user

interests. Furthermore, it maintains tight coupling in the model

with the domain that user profiles are trained on. Finally,

over-specialisation does not really encourage serendipitous

discovery which is a preferred measure in many use cases

such as music recommendations.
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IV. COLLABORATIVE FILTERING

In our data-driven era user behavior is being constantly

logged and used for improving the quality of service in

various applications and services. Thus, a dedicated class

of recommenders has been established that builds mainly

on user actions, known as “Collaborative Filtering”. Such

recommenders do not apply any content inspection on the

items they are recommending, in contrary, they base their

recommendations on what other similar users have rated or

clicked. One of the closest prior approaches to collaborative

filtering coming from the AI field, is the nearest neighbor

approach for classification where the k nearest users to a

queried user are used too infer interests.

A. Overview

Collaborative Filtering (CF) techniques exploit the interest

similarity between users of a system in order to offer them

future recommendations rather than analysing the content of

items. Such techniques regard user ratings or clicks to find

implicit groups of users or items (based on user activity) that

are closely related and thus require their active participation
for higher accuracy in their predictions. Furthermore, one of

the main benefits of such a content-agnostic approach is the

higher granularity (item-level) of recommendations in contrast

to the topic/term-based level of content-based methods. In this

section we will analyse the different types and algorithms used

in collaborative filtering, several recent developments and also

provide use cases in the context of the news recommendation

problem.

In general, CF techniques vary based on their approach,

however they conceptually fall into one or both of the follow-

ing two categories [26]:

Memory-Based CF: This category of CF identifies user

recommendation as a similarity computation problem and thus

is focused on first finding the top-K most similar users to a

given user to provide recommendations and then recommend

that user the top-N items based on aggregate ratings within the

top-K user group. This is the simplest and mostly deployed

form of CF and can be highly effective especially when rating

matrices are not significantly sparse.

Model-Based CF: A more fundamental way of providing

recommendations with CF is to train the recommender system

with machine learning techniques in order to infer hidden

behavioural patterns within users of which the behaviour

(clicks, ratings etc.) is being modelled. User modelling allows

for further compression techniques such as the Singular Value
Decomposition (SVD) and hidden latent semantic modelling

for finding hidden factors that group users while also dealing

with sparse data.

B. Memory-Based Filtering

The core function in Model-Based CF is to compute and sort

users or items by similarity metrics on weight matrices. The

process of applying Memory-Based CF has two closely related

variations: item-centric and user-centric similarity computa-

tion. In the case of item-based computation the goal is to create

a similarity item-item matrix with respective weights between

each set of items that reflect the co-rating ratio among users. To

achieve this a set of all users that have rated each set of items is

considered to apply the similarity computation. This approach

is often adopted by e-marketplaces and the weight matrix is

used for item recommendations based on items bought (eg.

users who bought/viewed item i also bought/viewed items

j and k). In contrast, on the user-centric approach the user

similarity is being computed first between users who have

rated each set of items to generate a user-user similarity

matrix. In both cases certain similarity measures are needed

to be adopted that are applied on user actions per se.

1) Similarity Metrics for Memory-Based Filtering: The

mostly used similarity metrics for this purpose are Correlation-
Based such as Pearson’s correlation and the Vector Cosine-
Based similarity. Pearson’s correlation between two variables

X and Y measures the degree of linear dependence between

them, assigning a value v in [−1, 1] where v = 0 translates

as no correlation, v > 0 shows positive correlation and v < 0
negative correlation. In its general form for a given sample n
Pearson’s correlation between X and Y is the following:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2

The cosine similarity between two vectors has been in-

troduced in III-D. A benefit of using Pearson’s correlation

coefficient over the cosine similarity metric is that it applies

normalisation to the vector similarity metric and thus it is

preferred when user rating sizes vary.

2) Computing Similarity Matrices: The basic construct

considered in memory-based CF is user × item matrix for

user ratings. This ratings matrix contains all user ratings per

item and thus, in most cases it is rather sparse.

For user-based filtering the similarity between each pair

of users i and j should be computed first in order to create

the user-user matrix w(ui, uj). Each cell (i, j) in the matrix

should therefore show the similarity wi,j between users i
and j based on their rating vectors. By applying Pearson’s

correlation coefficient between the rating vectors of users i
and j we have:

wi,j =

∑
k∈I(ri,k − r̄i)(rj,k − r̄j)√∑

i∈I(ri,k − r̄i)2
√∑

i∈I(rj,k − r̄j)2

where I is the set of items rated by either i or j and r̄i, r̄j
are the average ratings among the co-rated items of i and j
respectively.

Alternatively, an item-based approach aims to create

an item-item matrix w(itemi, itemj), also referred as co-
visitation matrix between each pair of items based on user

rating vectors. Thus each cell (i, j) should reflect the degree

of co-visitation or correlation wi,j between items i and j. By

applying the Pearson’s correlation in this context we have:
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wi,j =

∑
u∈U (ru,i − r̄i)(ru,j − r̄j)√∑

u∈U (ru,i − r̄i)2
√∑

u∈U (ru,j − r̄j)2

where U is the set of users that have rated either i or j and

r̄i, r̄j are the average ratings of items i and j respectively.

Since finding the top-K neighbours in large sets of items

and users can be often too expensive, several techniques have

been developed that apply dimensionality reduction principles

in order to ease the process of neighbourhood estimation. One

of the most popular techniques is called Locality-sensitive
Hashing which achieves that goal in sublinear time.

3) Item Scoring Prediction: Given that a the top-K closest

user set U has been computed for each individual user u,

a scoring function should therefore predict the suitability of

each item i (eg. an article) rated by users within U to that

user. In its general form a rating represents an aggregate of

other user ratings within U given an aggregate function f as

ru,i = fu′∈Uru′,i
For example a simple average of the top −K user ratings

could be the following:

ru,i =

∑
u′∈U ru′,i

K

A more adopted approach is to add user similarities as

weights in the average as such:

ru,i = t
∑
u′∈U

sim(u, u′)ru′,i

where t is a normalisation factor.

C. Model-Based Filtering

1) Clustering CF: Perhaps the dominant model-based ap-

proach to collaborative filtering today is applying clustering

of similar users based on their interests or items based on as-

sociated user actions/interests. Clustering resembles memory-

based top-K approaches where the “closest” items or users

are needed to be found in order to consider only intra-

neighbourhood ratings for item recommendations. We will

continue this section from an item-centric point of view,

however, the process is similar for finding close users. To

motivate the need for efficient clustering techniques we will

provide some further background on the general problem of

finding closest neighbours.

In our model we can represent each item I as a set

containing users that are interested in that item , eg. I =
{u4, u10, u244}. For example, in a news recommender service

those can be the users that have actually clicked and read

a specific article. Since items are sets, we can measure the

similarity between two items, eg. I and K = {u5, u10} using

the Jaccard coefficient J(I,K) = |I∩K|
|I∪K|

In our example that would yield J(I,K) = 1
5 . In general

two sets are identical when the Jaccard similarity is 1 and

disjoint when it is 0. In order to find the nearest neighbours be-

tween items within our data set we should therefore calculate

the Jaccard similarity between all pairs of existing items in an

Item× Users matrix, an operation that would be inefficient

when users or/and items are too many (eg. 106 scale) and

thus such a matrix is too sparse. MinHash is a technique

that is widely used among other use cases to estimate the

Jaccard similarity of sets by also reducing the computational

complexity of this clustering problem in terms of number of

comparisons.

a) MinHash Clustering: The MinHash technique is

practically an estimator of the Jaccard similarity, a scheme

invented by Andrei Broder et al [7]. Its applications vary

from detecting duplicates to clustering similar itemsets in

sublinear time. In each iteration a hash function h is used

to to hash all members of each two sets A and B to dis-

tinct integers. For each set S let hmin(S) be the minimum

hash value minx∈Sh(x). When hmin(A) = hmin(B) (the

minimum hashed item lies within A ∩ B). That yields that

P [hmin(A) = hmin(B)] = J(A,B).
Each set S with n items can be therefore reduced to a

smaller vector consisting of m minima where each minima

is determined by an h function S′ = [s1, s2, . . . , sm] where

si = hmin,i(S). We call S′ the signature of S and compute

the estimated Jaccard similarity of signatures A′ and B′

as P [A′i = B′i]. The problem of computing the similarity

between all existing sets of items still persists especially when

we are only interested in similar itemsets or sets that bear

a minimum bound of similarity. Locality Sensitive Hashing
offers a solution to the problem by only considering the com-

putation of strongly similar itemsets (ie. nearest neighbours), a

technique that is widely used for computation reduction (over

parallelism) in collaborative filtering.

b) Locality Sensitive Hashing (LSH) : The basic idea

of Locality Sensitive Hashing, first introduced by Indyk and

Motwani [11], is to apply bucketing in the signature matrix of

all items and reduce the similarity computation only to items

that fall into the same bucket. The main property needed for

bucketing in this case is to use a hashing function that puts

similar itemsets into the same bucket with high probability.

In order to increase the probability of two strongly similar

itemsets falling into the same bucket the signature matrix is

therefore partitioned vertically into a fixed number of bands.

For each band a hash function is chosen that hashes the

intra-band signatures into a dedicated bucket array per band.

The correctness of this method relies on the assumption that

the more identical two item signature vectors are the more

probable it is to fall into the same bucket on at least one

band. In terms of accuracy LSH relies strongly on the number

of bands chosen to partition the signature matrix. Given that

two items A and B have similarity s, for r number of rows

partitioned in each band the probability that all rows in a

band are equal is sr while the probability that at least one

row in a band is unequal between A and B is 1 − sr. Thus,

the probability that no band resolves into equal rows for A
and B is (1 − sr)b. This yields that that the probability of

A and B falling in the same bucket in at least one band

is 1 − (1 − sr)b. Therefore, we can adjust b to trade-off
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Fig. 3: Probabilistic Latent Semantic Indexing

between lower computational complexity and accuracy by

adjusting b accordingly. Since the aforementioned probability

follows a sigmoid curve (S-curve) relative to the similarity

distance threshold we want to consider for bucketing the

desired threshold can be approximated by (1/b)1/r [11].

2) Probabilistic Latent Semantic Indexing for CF: Prob-

abilistic Latent Semantic Analysis (PLSA or PLSI) is a

statistical technique originally derived from latent semantic

analysis and aims to model the probability of co-occurrences

as a combination of conditionally independent multinomial

distributions. For example, in the case of estimating P (u|i)
between user and item co-occurrences (u|i) the PLSI approach

is to introduce a hidden variable Z also denoted as the latent
class with domain Z where ||Z|| = L.

The core of the idea of introducing a hidden (latent) variable

is to make the two variables studied for co-occurrence (in this

case users and items) conditionally independent as it is visually

expressed in Fig. 3 . The modelled probability would therefore

be p(i|u; θ) = ∑L
z=1 p(z|u)p(i|z)

The model is purely controlled by parameter θ which

represents the cumulative probability distributions (CDFs) of

p(z|u) and p(i|z). Another way of viewing this technique is to

consider it as a clustering approach, thus, p(z—u) would reflect

the distance of u to cluster z where the number of clusters is

finite (L). Probabilistic clustering methods such as PLSI are

also referred to as soft clustering techniques since each data

point or pair of points is studied for fitness over all classes

or clusters along with a proportional probability or weight for

each in contrast to hard clustering techniques (e.g. K-Means)

where each point belongs to one cluster with probability 1.

In practice, the CDFs in θ can be estimated in an iterative

function using the Expectation Maximization (EM) algorithm

to learn the maximum likelihood parameters of the model as

described below.

a) The Expectation-Maximization (EM) Algorithm: EM

is a widely used iterative method that aims to find the maxi-

mum likelihood estimates of parameters in statistical models

where latent variables are included. The two iterative steps

performed in EM are the Expectation and the Maximisation
step, also denoted as E and M .

The technique is as follows: Given a dataset D we want

to estimate parameters θ where θ′ is a dummy variable and

D′ is the denoted dataset with latent variables included. We

consider an initialisation step for θ where θ̂(0) is the initial

value and a series of iterations of an E-step (expectation) and

an M-step (maximization) as follows:

• Define initial parameters θ̂(0)

• Repeat E,M steps until convergence or for a fixed number

of iterations T

– E-step: Compute Q(θ′, θ̂(i)) = E(f(θ′;D′)|D, θ̂(i))
– M-step: Estimate θ̂(i+1) as maxθ′Q(θ′, θ̂(i))

3) Alternating Least Squares: Alternating Least Squares
or ALS, is a variant to matrix factorisation that performs

well in large scale deployments [32][12]. In summary ALS
provides an optimisation of the known factorisation problem

: P = X × Y T by applying iterative row parallelisation.

Another benefit is its ease to consider implicit datasets, eg.

binary actions that is the usual case. On each parallel iteration

either X or Y factorization matrix is assumed to be fixed and

the optimisation is being solved for the other.

A typical least-squares approximation works as following:

Given some regularization weights cui = I + arui we iterate

to minimize:

∑
cui(pui − xT

u yi)
2 + λ(

∑
||xu||2 +

∑
||yi||2)

The ALS variation of least-squares approximation assumes

a fixed Y to compute the optimal X (and vice versa).

Furthermore, each row xu is independent and Cu is the

diagonal matrix of cu, the user strength weights. Thus, it yields

xu = (Y TCuY + λI)−IY TCupu
4) Bayesian CF: One of the first approaches to CF involves

creating a probabilistic model using Bayesian Networks [6].

A Bayesian network consists of nodes representing items (or

users respectively) in a domain, having states that reflect

the user ratings or a “no-rating” state. A learning Bayesian

network algorithm would therefore generate a network that

reflects a hierarchy of item dependencies. The parents of each

item in the hierarchy are considered the best predictors for

its ratings and can be used further for predicting user scores.

The model resembles a decision tree structure from which all

conditional probabilities can be derived for each node.

D. Applications and Limitations

Collaborative filtering is widely used today in production

for movies, news, music and other recommendation use cases.

One of the greatest benefits of this type of recommenders

is that they are generic enough to be used in multiple use

cases. It is often the case that people who bear similarities in

one subject might probably be similar in other things as well

like drink preferences. This makes collaborative filtering really

powerful, however, it is usually not used as a single technique.

In most cases collaborative filtering is used in combination

with content-based approaches to deal with the problem of

bootstrapping but also to enrich the recommendations quality.

V. SPECIAL CASES IN NEWS RECOMMENDATION

In this section we analyse domain-specific cases for recom-

mender systems on personalised news recommendation. As

described in Section I-A news articles introduce special tem-

poral and spatial properties. It is therefore important to address

such properties and reflect these features as a part of a final
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scoring algorithm for user recommendations. The dominant

characteristics of news articles, addressed either independently

or on conjunction [10] for more successful recommendations,

are the popularity, freshness and user interests.

A. Hybrid Content-Based and Collaborative Filtering Ap-
proaches

It is evident that content-based approaches themselves

cannot reflect trends and user behaviour in general while

collaborative filtering techniques rely heavily on the avail-

ability of user logs. Kirshenbaum et al [15] conducted a

comparative study upon both historical and live data to identify

the combination of recommendation techniques that can offer

the best click-through rate (CTR) among common alternative

scoring methods. The most effective method was a hybrid

of item-item collaborative filtering and content-based TF-

IDF method offering 37% improvement over baseline article

recommendation methods. Google News adopted a similar

hybrid strategy to enhance their news recommender system

by adding content-based scoring, mentioned in section III-E to

their existing collaborative filtering recommendation approach.

They further showed an improvement of 30.9% in terms of

CTR compared to their existing recommendations via live AB

testing.

B. Article Popularity Measures and Prediction

The popularity of articles is an important factor when it

comes to recommendations and has already been addressed

indirectly both in the content based filtering and collaborative

filtering techniques presented before. In this section we will

see in more detail how we can quantify popularity explicitly

from user actions (eg. comments or clicks) and incorporate

it in any scoring algorithm. Antoniadis et. al [29], [27], [28]

have proposed a comment-based approach to measuring and

therefore predicting popularity of new articles or topics as

well as lifetime expectancy estimation which is an orthogonal

problem. Alternative approaches [17], [4], [2] analyse social

activity for forecasting “hot” news and topics and thus assign

them higher score weights.

1) Popularity Prediction with Activity Monitoring: The

authors in [29], [27] propose the time interval between an

article’s creation and the last user comment made on that

article as a metric for article popularity and further observed

that the cumulative distribution function (CDF) of that metric

fits the power law distribution [9]. Therefore, the most suitable

prediction model for popularity proposed in the same study is

linear regression on a logarithmic scale (LinearLog) which

was also employed in the past by popular web content recom-

mendation services [30]. The LinearLog model N̂LN
s can be

trained per article s at a time ti, given the current number of

comments Ns(ti) to predict the number of comments at any

time tr where ti < tr as such:

N̂LN
s (ti, tr) = exp

(
ln(Ns(ti)) + β0(ti, tr) +

σ2
0(ti, tr)

2

)

where β0 is a coefficient obtained through maximum likeli-

hood estimation while σ2
0 denotes the variance of the residuals

on a logarithmic scale. An example scoring algorithm that

can be derived from such estimator would be a ranking of the

predicted popularity in 24h after each article’s publishing time

N̂LN
s (ti, 24).
2) Popularity Prediction with Content Inspection: In con-

trast to activity monitoring several studies have been conducted

that base their popularity approximations of news articles

solely on their content even prior to their publication by

inspecting their content in correlation with current trends from

the social web. In [4] the authors consider a multi-dimensional

feature space that can be derived from article content and train

their model using both regression and classification methods.

They further show from an inspection from Twitter posts

that a 84% accuracy of articles popularity prediction can be

achieved solely by content inspection. The main characteristics

considered in the study were 1) the artice source, 2) the

main topic, 3) the subjectivity of the language used in the

article and 4) named entities mentioned in the article. To train

their models the authors introduced an article nominal class

characterising the type of each article based on its popularity

(i.e. number of tweets).

The accuracy of machine learning algorithms was evaluated

over a set of 10000 articles with the results seen in Table I.

Algorithm Accuracy
Bootstrap Aggregation (Bagging) 83.96%
Decision Trees (J48) 83.75%
SVM 81.54%
Naive Bayes 77.79%

TABLE I: Accuracy Evaluation [4]

C. Quality-Centric Scoring

Another important factor that is employed in several scoring

algorithms is the quality of an article. As Bendersky et al.

advocate in [5] quality-based measures further improve scoring

over document ranking techniques in retrieval systems that

are solely link-based such as PageRank [22]. Link-analysis in

scoring documents is according to the same authors equivalent

to collaborative-filtering techniques, thus, missing the impor-

tant contribution of content-based methods on ranking. The

proposed quality-biased ranking function for a document D
can be combined in a linear fashion with existing scores and

consists of a combination of feature scores multiplied with

their respective parameter:
∑

L∈L λLfL(D). The estimation

of the feature parameters can be made using the coordinate

ascent algorithm [20] or any other linear parameter estimation

algorithm such as RankSVM [14].

VI. EVALUATION OF SCORING ALGORITHMS

A. Overview

The correct evaluation of scoring algorithms and recom-

mender systems accuracy in general is of great importance

since it quantifies their predictability when it comes to user

interaction with a system.
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B. Methods
There are generally two main methods for evaluating rec-

ommender systems: the offline and online evaluation [25],

[10]. Offline evaluation is more common and easier to conduct

since no interaction with the user is necessary, although,

special attention should be given to the bias of the user

choices/ranking. It is generally preferable to conduct offline

evaluation of recommendation algorithms across user data

generated using a baseline algorithm to minimise such bias.

The online evaluation exposes a pool of “unaware” users

directly to a recommendation system under evaluation and

instantly measures its accuracy. Given a good sample selection,

the online evaluation is considered more trustworthy and closer

to reality.
1) Offline Evaluation: In general, offline evaluation is use-

ful for evaluating the predictive power of a recommendation

algorithm. In most cases this method is used first to compare

algorithms on a given data set consisting of user data prior to

the deployment of the algorithm. There are several ways of

assesing the predicted scores of an algorithm given a multi-

user dataset that spans over a long period of time [25].
Consistent Simulated Time Evaluation: A “realistic” ap-

proach to simulating scores across different algorithms over a

time history is to train a scoring algorithm in temporal order

for each user. Since the re-computation of a training model

is a computationally intensive operation a common approach

is to sample the users and all the time intervals to assess the

scoring capability of each algorithm on sampled intervals. In

that case, we only consider the user data prior to each interval

to train each algorithm and use it to predict user rankings until

the next random interval. Since time consistency is kept across

users in this approach, it is only useful when absolute time is

important for the given recommendation problem.
Random Simulated Time Evaluation: This approach is

similar to the prior one with the main difference that time is

not kept consistent across users. Thus, we consider different

time samples per user and use these to compute its consecutive

scoring approximation of a given algorithm. This approach

is less close to a realistic evaluation but it can reduce the

time bias of the train data in use while also being less

computationally intensive.
Time Agnostic Evaluation: In cases where the time metric

is not important we can totally ignore it during evaluation

and simply sample users and items into two distinct sets for

training and test. Thus, each scoring algorithm is trained based

on a subset of items ranked by each user and evaluated for

each predictability on the test data set of the rest of the items.
2) Online Evaluation: The most effective method to assess

the quality of a scoring algorithm is to use it directly on a

recommender application and observe its effect on the user

behavior. To effectivelly evaluate different scoring algorithms

[16] at the same time in a live deployment, it is usually preffer-

able to direct users to different recommender systems without

their awareness and assess the partial accuracy measures of

each algorithm for comparison purposes. In most cases online

evaluation is preferrable when algorithms have been priorly

tested upon an offline evaluation in order not to cause a

negative impact to the recommender system.

C. Measures

Perhaps the most important property of a recommender

engine is its ability to predict user behavior accurately.

Thus, accuracy is considered as the default metric to assess

how “good” a recommender is, under the assumption that

users prefer results who match their expected interests. There

are generally three main metrics used for recommendation

accuracy assessment that are also associated with scoring

algorithms in general:

Rating Prediction Accuracy : For measuring how close

the predicted ratings match the actual user ratings. A typical

measure is the Root Mean Squared Error (RMSE) and its

derivatives.

Usage Prediction Accuracy : For measuring the ability of

the recommender to predict the usage of items (eg. clicks) by

its specific user. Typical measures are the Precision, Recall
and ROC curves.

Ranking Accuracy : For measuring the quality of the order

the items appear to the user based on a recommender algo-

rithm. One measure used often is the Normalized Distance-
based Performance Measure (NDPM).

We will continue with a more detailed descriptions of the

most fundamental measures used on recommendations, as

mentioned above.

1) The Root Squared Mean Error (RSME): The RMSE

expresses the degree that the predicted ratings r̂ui vary from

the actual (hidden) user ratings rui. The RMSE is considered

among a test set T as such:

RMSE =

√√√√ 1

|T |
∑

(u,i)∈T
(r̂ui − rui)2

Similarly, the Mean Absolute Error (MAE) is given as such:

MAE =

√√√√ 1

|T |
∑

(u,i)∈T
|r̂ui − rui|

It is often recommended to normalise the RSME and MAE

measures to the scoring range or use their average across users

especially when the distribution of items is unbalanced [1].

2) Usage Precision Recall and ROC: Many recommender

systems such as news article recommenders or dating services

focus more on a simple binary prediction of the usage (or ab-

sense) of items by users rather than explicit ratings whatsoever.

In such cases more appropriate measures are the Precision,

Recall and the False Positive Rate of the recommender.

The basic metrics used in such measures are the True/False

Positives (TP, FP) and True/False Negatives (TN, FN) which

are counters for item recommendations falling in the categories

specified in Table II .Based on the measures above Precision,

Recall and False Positive Rate can be computed as seen in

Table III.
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Recommended

Yes Not

Used TP FN
Not Used FP TN

TABLE II: Recommendation Usage Classes

Precision TP
TP+FP

Recall TP
TP+FN

False Positive Rate FP
FP+TN

TABLE III: Recommendation Usage Classes

The precision and recall offer a significant trade-off. More
recommendations can lead to improved Recall but also re-

duced Precision. A common way to visualize the relationship

between Precision and Recall is by using ROC curves (true

positive-false positive rate) or precission-recall curves.

3) The Normalised Distance-based Performance Measure
(NDPM): Most ranking accuracy evaluation measures assume

a reference ordering of items for each user. For example, a

reference ranking of videos for a user could be the videos the

user has ranked so far in descending order. Since there are dis-

crete scoring values in most cases, it is possible to have equal

reference scores among items. The Normalised Distance-based

Performance Measure (NDPM) does not give any penalty

when there is a tie of the scores between items in the reference

and actual set and is given as NDPM = C−+0.5Cu0

Cu where:

C+ =
∑
ij

sgn(rui − ruj)sgn(r̂ui − t̂uj) (1)

C− =
∑
ij

sgn(rui − ruj)sgn(r̂uj − t̂ui) (2)

Cu =
∑
ij

sgn2(rui − ruj) (3)

Cu0 = Cu − (C+ + C−) (4)

When the ranking matches the reference ranking then

NDPM gives a score of 0, otherwise it gives a higher score

with a 1 score representing the worst ranking.

4) Other Measures: There are cases where accuracy mea-

sures do not fully reflect the quality of a recommender system

(eg. when the user is more interested into novel recommen-

dations such as in the case of music recommendation). For

that reason there are two alternative measures that can be

considered such as Novelty and Serendipity.

Novelty expresses the freshness of a recommendation from

the user’s perspective, i.e., whether recommended items have

been suggested before to the user. Several studies [24], [8] give

a penalty to recommendations that include popular items since

popularity is statistically inversely proportional to novelty.

Serendipity on the other hand measures the element of

surprise in recommendations. Randomness is sometimes mis-

takenly correlated with serendipity, however, it is more broad

and does not focus on items that the user is the least expecting

to see. In other words, serendipity values more recommenda-

tions that don’t match the profile of a user. For that purpose

recommendations with distance metrics can help to achieve

good serendipity scores.

D. Conclusions

Recommendation algorithms can be evaluated in both offline

and online tests. Offline tests are generally preferred for

general comparisons, however, online tests are more effective

on measuring the actual effectiveness of an algorithm upon the

behavior of the user. Accuracy measures are common and easy

to use in both offline and online evaluations and cover most

evaluation needs for recommender algorithms. Apart from

accuracy measures novelty and serendipity are also noteworthy

since they quantify the innovation in recommendations which

can be critical in various use cases.

VII. A CASE STUDY IN NEWS RECOMMENDATIONS

As described in section V, news recommendation and scor-

ing algorithms have to deal with a very special case of items.

News articles are not considered persistent items and they are

being updated at minimum on a daily basis. Since users seek

to read new articles every day a recommender should be able

to rank fresh items for each user based on their profile.

Given that this is one of the most challenging use cases of

recommender systems, we conducted an experimentally driven

analysis of state-of-the-art scoring algorithms and ideas in the

context of news ranking.

A. Experimental Study

In our experimental study we used news article user logs

collected throughout a span of 17 days from Sumline AB,

a Swedish commercial news aggregator service during the

period of November and December 2014. The data consisted

user actions (mainly clicks) on news articles and associated

metadata.

In summary, we ran our evaluation for 12000 events spread-

ing over the whole period, with an average of 700 events per

day. That dataset was the result of filtering by a single country,

Sweden, where most of the active users were coming from.
1) Evaluation Method: Since we conducted this study on

existing user logs, we only considered an offline analysis of

the selected scoring algoriths. Among the methods described

in Section VI we chose two:

A Consistent Simulated Time Evaluation to simulate the per-

formance of each scoring algorithm in the same time intervals

that it would be used if it would be running online. We refer

this method incremental.
A Time Agnostic Evaluation by applying cross-validation over

different periods we discretised our data on. This method

generally offers lower variance and is generally preferred for

evaluating collaborative filtering algorithms. We will refer to

this method as cross for the rest of the section.

As a basic period to discretize our data, we chose a day

(24h) since it also corresponds well to the periodicity of

the news articles. Our evaluation process for every scoring

algorithm and method is summed up in the following steps:
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Algorithm Type Description Identifier
(see Section) Identifier

Topic-Based (Click Behavior) Content-Based III-E content
Topic-Based (Click Behavior)
with Trend Influence Content-Based III-E content pub
ALS - Exclusive Col. Filtering IV-C3 als-excl
ALS - Inclusive Col. Filtering IV-C3 als-incl
ALS + Topic-based Hybrid III-E, IV-C3 als-content

TABLE IV: Algorithms considered

1) Sampling: Select the training and test datasets as such:

• For the incremental version select all events up to

period k to be included in the training set and put

all events of period k + 1 in the test set.

• For the cross version select k random periods of

which to create the training dataset and one random

period for the test set.

In some special cases we had to include the test set into

the training set as well as we will make clear later while

describing the different algorithms.

2) Training: Train each scoring algorithm by feeding it

all events from the training set given.

3) Scoring: Generate a User × Item matrix as a result

of the cartesian product of all distinct users and items

in the test set and use the scoring algorithm to predict

the score for each combination.

4) Ranking: Select the top K articles per user for each

algorithm based on their assigned score and compute the

True Positive Rate (also known as Recall or Sensitivity)

We chose to follow this methodology for conducting our

offline evaluation since it is suitable for implicit binary ratings

(eg. user clicks). By ranking and selecting the top K articles

per user we can easily check the predictability of each re-

spected scoring algorithm by just computing the original clicks

that are included in each recommended set, thus, eliminating

the need to normalise or transpose scores.

2) Algorithms and Implementation: In our evaluation we

decided to select and implement the most representative

algorithms from each recommender system category along

with their alternatives while also exploring the benefits of

using a hybrid approach. All algorithms considered in our

experimental comparison are summed up in table IV. Among

the existing content-based algorithms we chose to implement

Google’s topic-based algorithm along with its variant that

also includes the public trends in the predicted probability

distribution function of the recommended topics per user. We

have implemented the algorithms in Python using Apache

Spark to enable distributed processing. For the ALS variants

we used the MLLib implementation that comes with Apache

Spark [31]. We considered two variants for ALS, an inclusive

and an exclusive version, referring to the inclusion or not

of the actions of the test set to the training set. As it

was mentioned before collaborative filtering techniques suffer

from the bootstrapping problem, thus, making predictions

about items that do no exist in the model impossible. Fi-

nally, the hybrid algorithm simply selects articles as such:

topK(predictedALS × predictedcontent).

Fig. 4: True positive rate of each scoring algorithm - incremental

Fig. 5: True positive rate of each scoring algorithm - cross

3) Experiment Setup: Our experimental setup is a single

machine with 2.2GHz Intel Core i7 and 16GB Memory.

Furthermore, we made the following assumptions: For con-
tent pub we used 10 virtual clicks per topic and in the case of

ALS we chose to use 5 latent factors and 20 iterations as its

default parameters. During the Ranking phase we chose the

top 20 articles per user which was enough for evaluating our

scores given that the average number of clicks per day in the

service is four to five. The evaluation was mainly written using

Python Notebook to allow for some decent exploratory data

analysis experience. The results of the incremental method for

each specific algorithm variant can be seen in Fig. 4.

4) Discussion: Among the simple algorithm versions the

content-based variant with trend influence seemed to achieve

the highest TPR while the worst accuracy was excibited by the

exclusive version of ALS, making it clear that collaborative

filtering can only make an impact when we have enough data

available. The incluse version of ALS did achieve a reason-

ably good predictive performance, however, by itself it could

not beat the predictiveness of topic-based recommendations.

Finally, the hybrid version achieved the highest scores when

it comes to predictiveness. The improvement over the existing

topic-based approach can be clearly seen and explained based

on the highly quantized rankings of content-based techniques.

When all articles with the same content-id are put together

with the same score, upon ranking we would have to include

all of such articles together and then select the top K. That

would result in most article predictions falling in the same

categories for a user, belonging to the top one or two topics
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for this user. The collaborative filtering predicted score of ALS

can be therefore used to score articles with the same topic

id and thus improve the probability to include recommended

items from articles that are not part of the top topics for

a user. The cross variant is depicted in Fig. 5. This variant

bears similar characteristics to the incremental one, with only

a smaller general variance and a better performance for the

exclusive ALS version. That could be credited to the inclusion

of subsequent periods than the one contained in the test

set each time, some of which containing article click events

originating at the test set.

VIII. CONCLUSION

There are often trade offs over selecting to do content-

based or a collaborative filtering-based ranking of items. In

our experimental analysis we observed that the optimal true

positive rate can only be achieved by a hybrid score obtained

by both methods. Of course, collaborative filtering would only

be sensible to use when there are enough events at hand.

Thus, we could conclude that the optimal case lies in-between.

Perhaps an online deployment would be interesting to consider

gradually switching towards a hybrid scoring algorithm from

purely content based recommenders based on trends. The

adaptive inclusion of collaborative filtering scorings to final

scorings makes a good application of stream processing and

would be an interesting use case for future work.
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