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Abstract—High-level parallel dataflow systems, such as Pig
and Hive, have lately gained great popularity in the area of
big data processing. These systems often consist of a declarative
query language and a set of compilers, which transform queries
into execution plans and submit them to a distributed engine
for execution. Apart from the useful abstraction and support for
common analysis operations, high-level processing systems also
offer great opportunities for automatic optimizations. Existing
studies on execution traces from big datacenters and industrial
clusters show that there is significant computation redundancy
in analysis programs, i.e., there exist similar or even identical
queries on the same datasets in different jobs. Furthermore,
workload characterization of MapReduce traces from large
organizations suggest that there is a big need for caching job
results, that will enable their reuse and improve execution time.

In this paper, we propose m2r2, an extensible and language-
independent framework for results materialization and reuse in
high-level dataflow systems for big data analytics. Our prototype
implementation is built on top of the Pig dataflow system and
handles automatic results caching, common sub-query matching
and rewriting, as well as garbage collection. We have evaluated
m2r2 using the TPC-H benchmark for Pig and report reduced
query execution time by 65% on average.

Keywords—results reuse; materialization; computation redun-
dancies;

I. INTRODUCTION

Big data collection, processing and analysis is becoming
one of the major concerns for large and small organizations,
companies and academic institutions. Operations, business de-
cisions, product recommendations and numerous other every-
day tasks are increasingly relying on processing and analyzing
large datasets of diverse formats and heterogeneous sources.
The need for making the power of big data analysis available
to non-experts and analysts with no programming experience,
quickly led to the development and adaptation of high-level,
dataflow systems for data analysis.

Pig [1], Hive [2] and Jaql [3] are among the most widely
used high-level dataflow frameworks for big data analytics.
They offer an easy programming experience, using declarative
languages and support for common data analysis operations,
such as filtering, projection, join, grouping, etc. Their advan-
tages include ease of use, fast prototyping, readable and easily-
maintainable programs. Studies show that a big percentage of
analytics is performed using such high-level layers [4]. Apart

from their obvious benefits for users, high-level dataflow sys-
tems also offer great opportunities for automatic optimizations.

In this paper, we propose an optimization regarding identi-
fying and avoiding computational redundancies, i.e., similar or
identical queries in different jobs. It is based on recent research
studies revealing that redundancies exist in a big extend among
typical analysis workloads [5], [6], [7], showing a 30-60% of
similarity in queries submitted for execution. In other words,
parts of queries or even whole jobs submitted for execution
re-appear unchanged in future job submissions. A common
case is some kind of initial filtering or transformation on a
dataset before the main analysis task. For example, filtering
out badly formatted records, spam e-mails or transforming a
data representation into another.

The common way to implement this optimization is by
caching query and sub-query results, to avoid re-computing
identical tasks in future jobs. The idea is based on the ma-
terialized view technique, popular in relational databases [8],
[9], [10]. In order to exploit materialized results, the system
needs to identify the redundancy in future job submissions
and provide a mechanism to rewrite queries, so that stored
results can be reused. In the context of high-level dataflow
systems, there has been some remarkable previous work,
mainly for DryadLINQ and Pig [7], [5], [6], [11]. The proposed
materialization and reuse frameworks handle the problem by
providing an execution plan matcher and query rewriter. These
frameworks are naturally highly coupled to the underlying
processing systems and execution engines. ReStore [11], for
example, matches plans at the physical level, assuming that Pig
scripts are translated into MapReduce jobs, while DryadInc [6]
assumes a Dryad DAG as the execution model.

However, there has been recent interest in integrating pop-
ular high-level dataflow languages with alternative execution
engines or developing new ones. In particular, Shark [12] offers
an implementation of Hive on top of Spark [13] and PonIC [14]
translates Pig scripts into Stratosphere [15] jobs. Furthermore,
several different parallel-dataflow systems can be used by
the same organization, inside the same datacenter or cluster
to process common datasets. Since all these technologies
are quite recent and are still evolving, it might be the case
that different development teams, inside the same company,
use different frameworks and languages to implement similar
analysis tasks and process common datasets.
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We are, therefore, in need of a language and execu-
tion engine-independent and extensible framework for storing,
managing and re-using query results. We observe that, despite
the differences in the backends of existing high-level dataflow
processing systems, they do share common design charac-
teristics on higher layers. These systems often offer a high-
level declarative-type language, whose statements correspond
to data operators, defining how data will be organized and
processed. Thus, a query is normally translated into a DAG of
operators, called the logical plan. This plan is then optimized
and translated into a physical execution plan, which defines
how the operators will be implemented and executed on the
underlying parallel execution engine. For example, in the case
of Pig and Hive, the final plan is a DAG of MapReduce jobs,
while in the case of Shark, it is a Spark dataflow and in the
case of PonIC it is a Stratosphere job.

In this paper, we present m2r2 (materialize-match-rewrite-
reuse), a language-independent and extensible framework for
storing, managing and using previous job and sub-job results.
In order to achieve generality and support different languages
and backend execution engines, we have chosen to base
our design at the logical plan level. We provide a detailed
description of general techniques for identifying candidate sub-
plans for materialization. We propose mechanisms for efficient
storage and retrieval of plans and sub-plans, in order to exploit
reuse opportunities and we also discuss garbage collection and
management of the results repository. We report our on-going
work on a prototype implementation using the Pig framework
and MySQL Cluster as the repository for storing and managing
plans and sub-plans. We present very promising preliminary
results, using the TPC-H benchmark for evaluation. The main
contributions of this paper are as follows.

• We discuss and identify architecture and design sim-
ilarities in high-level dataflow processing systems for
big data, in order to find the proper level for provid-
ing a reuse mechanism based on materialization an
caching of previous query results.

• We propose a language and execution engine-
independent framework, m2r2, for results materializa-
tion and reuse.

• We describe a prototype implementation of our mate-
rialization and reuse framework for the Pig system.

• We provide an evaluation of our prototype implemen-
tation of m2r2, using the TPC-H benchmark for Pig.

The rest of this paper is organized as follows. Section II
provides a brief overview of the materialized view techniques
in relational databases. Section III discusses the similarities in
the design and implementation of popular high-level dataflow
systems for big data. Section IV presents the design of m2r2
and Section V discusses implementation details regarding our
prototype on Pig. In Section VI, we provide evaluation results.
Section VII discusses related work, while we conclude and
share our future research directions in Section VIII.

II. BACKGROUND

A. Materialized Views in Relational Databases

A materialized view in the context of relational databases
is a derived relation, stored in the database. Creating and

managing materialized views is driven by several applications,
such as query optimization, maintaining physical data indepen-
dence, data integration and others [16]. In this work, we are
only interested in materialized views techniques used for query
optimization. The idea is based on the fact that queries can be
computed from materialized views, instead of base relations,
by reusing results of common sub-queries. We briefly discuss
the three main problems related to this technique: view design,
view maintenance and view exploitation.

1) View Design: View design determines which views will
be materialized, considering the trade-off between the limited
space for storing the views and the search cost for finding
a related view. Thus, it is not practical to create a view for
every sub-query, but instead, use a technique to select which
sub-queries to materialize. View design is carried out in two
steps, view enumeration and view selection. View enumeration
aims to reduce the number of candidate views to be considered
by the selection phase, by filtering out the non-related views.
View selection is based on a cost-benefit model. A view is
considered beneficial if it is expensive to compute and if it can
be reused by other queries. The cost is computed based on the
overhead to select, create and store the views and the overhead
to keep the views updated. Since relational databases use cost-
based query optimizers, View selection can be easily integrated
with the query optimizer. Therefore, views are selected by the
query optimizer based on their benefit and cost.

2) View Maintenance: View maintenance refers to the
problem of updating the materialized views when the base
relations change. Specifically, when operations such as Insert,
Update or Delete are performed on the base relations, the ma-
terialized views get “dirty” and they should either be updated
or garbage collected. [17] discusses the view maintenance
problems and techniques in detail. We are not interested in
view maintenance, since most parallel processing platforms
assume append-only input data. However, we discuss garbage
collection in Section IV-E.

3) View Exploitation: View exploitation describes how to
efficiently use materialized views for query optimization. It
includes two phases, view matching and query rewriting. View
matching defines how to find the related views that can be
used for answering queries. Query rewriting generates a new
query, using the selected views. The rewritten query can either
be an equivalent expression to the original and provide an
accurate answer or, only provide a maximal answer. In this
paper, when referring to query rewriting, we always mean
equivalent rewriting.

III. DESIGN AND SIMILARITIES OF HIGH-LEVEL

DATAFLOW SYSTEMS FOR BIG DATA

In this section, we summarize the system design and
common characteristics of popular high-level dataflow systems
for big data analytics. Our study is mainly based on Pig
[1], Hive [2], Jaql [3] and DryadLINQ [18]. We discuss the
main system components and focus on the architecture and
compilation similarities, which motivate our design decisions.

A. Language Layer

The majority of high-level dataflow processing systems
offer a declarative, SQL-like scripting language for writing
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applications. Programs consist of series of statements, each of
which, defines a transformation on one or more collections of
datasets and produces new collections. Data is usually read
from a distributed file system and final results are also stored
there. All systems allow user-defined functions, which can be
used in conjunction with the language-provided statements. A
wide variety of datatypes is also supported, allowing schema
specification and nested data structures.

B. Data Operators

The language statements correspond to data operators,
objects that encapsulate the logic of the transformations to
be performed on datasets. Data operators have one or mul-
tiple inputs and usually one output. We refer to the special
operator which accepts input from persistent storage, such
as a file system, as the Load operator and to the special
operator that writes its output to persistent storage as the
Store operator. We refer to common analysis operators for
manipulating collections of data such as Filter, Group By,
Join, Order, etc as Relational operators. Relational operators
are distinguished from Expression operators, such as Sum,
Count, Avg, (elsewhere also seen as functions), which can be
composed to form expressions and are usually nested inside
relational operators. Some high-level languages also support
control-flow operators, which we do not consider at present.

C. The Logical Plan

After a script is submitted for execution, it is sent to the
parser, which is responsible for creating the Abstract Syntactic
Tree (AST). If there are no syntax violations, the AST is
transformed into a Directed Acyclic Graph (DAG), called
the logical plan. The nodes of this plan correspond to data
operators, which are connected by directed edges, denoting
data flow. The logical plan usually has one or more sources,
corresponding to Load operators and at least one sink, which
corresponds to the Store operator.

D. Compilation to an Execution Graph

In order to produce the final execution plan, the logical plan
goes through two main phases, optimization and translation.
During the optimization phase, the plan is simplified and
data-flow optimizations are applied, such as filter pushdown,
column pruning, etc. The goal is mainly to reduce the amount
of data that will be transfered from one operator to the
other or create parallelization opportunities. The output of
the optimization phase is a rewritten, optimized logical plan.
The optimized logical plan is next transformed into a lower-
level representation, usually referred to as the physical plan.
The physical plan is a more detailed and usually larger DAG
of fine-grained operators, the physical operators. While the
logical operators only contain information about the semantics
of an operation, the physical operators encapsulate information
regarding its actual physical execution. For example, a logical
operator Join represents the result of matching two or more
datasets based on a key and collecting the set of records
that are matched. On the other hand, a physical operator Join
contains information about the specific execution strategy that
will be used for executing the join (hash-based approach, a
merge-sort, the replicated strategy, etc.). Finally, the physical
plan is translated into an engine-specific dataflow DAG of

tasks or jobs, such as Map-Reduce jobs or Dryad jobs, each
encapsulating a part of the initial logical plan.

E. Discussion

We observe that all of the systems share very similar
designs on the upper layers, from the language layer until
the optimization of the logical plan. The step of translating
the logical plan into a physical plan is where the system
logics start to divert. This is mainly due to the differences
that exist in the backend frameworks, since physical operator
implementations essentially depend on the capabilities of the
underlying execution engine. We, therefore, believe that it is
not a wise design choice to make any assumptions about the
backend execution engine. Instead, since our main goal is to
make a general framework, we build the materialization and
reuse framework at the logical level, which is more stable and
less likely to change. The logical plan level is abstract enough
to provide us with some information about operator costs, even
if we might lose some reuse opportunities, due to reduced
granularity. It is true that the more we move down in the
compilation process layers, the more fine-grained operators we
can exploit, with higher chance for reuse and more information
regarding operator costs. However, in that case, we would
have to build a specialized system for each language and
execution engine. It is our goal to be able to exploit reuse and
sharing opportunities among different frameworks, as well as
provide support for adding new operators and new languages
in the future. We are certain that the logical plan layer is the
appropriate point for integration, in order to build a language-
independent and execution-engine independent, extensible and
configurable framework for results materialization and reuse.

IV. M2R2 DESIGN

We summarize here our main design goals.

• Independence of the high-level language. Our design
is based on the assumption that there exists an abstract
logical operator layer, similar to the one described
in Section III-B. If necessary, this layer can be cus-
tomized based on the different characteristics and
requirements of each language.

• Independence of the execution engine. This design
goal is fulfilled by choosing the logical layer for
plan matching. Query rewriting happens before the
compilation into physical operators and is, therefore,
independent of their implementation.

• Extensibility. It is our intention to create a fully ex-
tensible framework, so that new operators, languages
and execution engines can be easily supported.

• Configurability. Our preliminary experiments show
that system parameters are very sensitive to workload
characteristics. Therefore, we have decided to allow
the users to tune important system parameters, such
as the set of operators after which sub-plans are
materialized, the degree of replication of stored results
and the garbage collection policy.

• Effectiveness and Efficiency. The reuse mechanism
should provide some gain in query execution and this
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Fig. 1: Flow Diagram of the Match and ReWrite Algorithm

gain should exceed the overhead associated with the
reuse mechanism.

The five components of our framework, Plan Matcher and
Rewriter, Logical Optimizer, Results Cache, Plan Repository
and Garbage Collector, are discussed next.

A. Plan Matcher and Rewriter

The Plan Matcher and Rewriter takes as input an optimized
logical plan and produces a rewritten logical plan, as output,
compatible with the logical plan that the compiler of the
underlying framework is expecting. It stores a representation
of the (sub) plan and execution statistics about the job in the
repository. The Match phase performs lookups in the repository
for finding potential matches. If the fingerprint of the input plan
or its sub-plans exists in the repository and the output exists
in the results cache, then we have a match. In this case, the
Rewrite phase is activated and generates new logical plan by
adding or removing operators from/to the original logical plan.
The tasks performed by this component can be summarized in
the four following steps: (1) Choose a set of sub-plans from the
input plan to materialize; (2) Calculate the fingerprints of the
plans and its sub-plans; (3) Store the fingerprints and execution
statistics of the selected plan in the repository, if no match is
found or rewrite the query if there is a match. A flow diagram
of the Plan and Rewrite Algorithm is shown in Figure 1.

1) Sub-Plan Selection Criteria: One of the main challenges
we need to solve is selecting which sub-plans to materialize,
since each sub-plan has a different cost and possibilities to
reoccur in a future job submission. In order to select the
most beneficial sub-plans, we examine the following three
criteria: (1) Whether the data size of the output is reduced; (2)
whether the computation is expensive; (3) reuse possibilities
from future queries. Commonly used operators, such as Filter,
often used in the very beginning of the logical plan are good
candidates for reducing the data size. Projection is another
good candidate, as it often performs column pruning. On the
other hand, Group and Join are two commonly used expensive
operators, which, for some execution engines, such as MapRe-
duce, incur significant I/O overhead. Thus, materializing these

operators is also a good idea. In general, users should better
combine the selection strategy with a specific workload.

B. Plan Optimizer

The logical optimizer optimizes the rewritten logical plan.
First, Store operators are inserted in order to generate the sub-
plans. Second, the matched sub-plan is replaced by a Load
operator, which might not be able to recognize the type of the
input data. We must therefore translate the new data scheme.
Most of the high-level dataflow frameworks already provide
a logical optimizer layer. We highly encourage users to use
the provided optimizer or extend it, in case some additional
functionality is necessary.

C. Results Cache

The Results Cache stores intermediate results and results of
whole jobs. In order to simplify implementation, we suggest
using the already provided data storage by each framework.
e.g. a distributed file system. This way, rewriting plans is
greatly simplified and reuse becomes transparent to the un-
derlying system. However, since most systems use replication
for fault-tolerance, using the same configuration for storing in-
termediate results might increase the overhead. We, therefore,
encourage users to disable replication for the results cache.

D. Plan Repository

The Plan Repository stores the hash of the selected plan,
the output path of the plan and statistics about the stored
results, such as the reuse frequency and the last access times-
tamp. It can be implemented as a key-value store or an in-
memory relational database.

E. Garbage Collector

The Garbage Collector operates based on information
collected by the Repository manager and the Results Cache.
It locates obsolete records in the Repository and deletes the
related data in both the Repository and the Cache. The garbage
collection policy is configurable and can be implemented as
least-recently-used, based on reuse frequency or a combination
of statistics. Garbage collection can be implemented as a
periodical background process or can be explicitly invoked
by the user. Alternatively, several threshold values can be set,
so that garbage collection is triggered when one of them is
violated, for example if the available disk space is too low.

V. IMPLEMENTATION

We implemented a prototype reuse framework on top of
Pig/Hadoop. The system architecture is shown in Figure 2.

A. Match and Rewrite Phase

We have chosen to represent logical plans simply as
Strings. The choice is driven by two facts. First, Pig already
provides a method for transforming an operator into a String,
containing all necessary information for identifying the op-
erator. Therefore, composing operators becomes as simple as
concatenating Strings. Second, having the plans in a String
representation greatly simplifies the computation of their fin-
gerprints, which we need to store in the repository.
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Fig. 2: Implementation of the Reuse Framework on Pig

Fig. 3: Bottom-Up Logical Plan Traversal

In Pig, a query can be uniquely identified by its input and
its logical plan. For simplicity, we assume that input files are
identified by file names and file paths and that these do not
change. Therefore, two identical files with different names are
treated as different files by our implementation. To calculate
the hash of a sub-query, we first calculate the fingerprint
of its logical plan, then we calculate the fingerprint of its
input and then use their concatenation to uniquely identify the
query. We compute the fingerprint of a logical plan with the
following steps: (1) A depth-first transversal to retrieve a list of
ordered operators in the plan, as demonstrated in Figure 3. (2)
Concatenation of the string representations of the operators;
(3) Calculation of the hash of the final string. We extend Pig’s
getSignature() method in the LogicalPlan class to also acquire
the fingerprints of the plan’s inner plans during the traversal.

B. Results Cache and Repository

We have used HDFS [19] as the Results Cache and
MySQL Cluster [20] as the Repository for our implementation.
MySQL Cluster is an in-memory database which provides
high read/write throughput. It is a highly available, scalable
and fault-tolerant store. We use ClusterJ to connect Pig with
MySQL Cluster, because it is simple to use and can well

satisfy our needs. We created one table in MySQL Cluster to
represent the Repository, with four columns: hashcode - hash
of the plan; filename - output path of the plan; frequency - the
reuse frequency; last access - last time to access the record.
Correspondingly, we created an annotated interface in Pig,
having the same four properties. When a sub-plan is selected
for materialization, we insert a new record at the MySQL
Cluster table and store the result in HDFS. By using HDFS
as the Results Cache, we can simply rewrite Pig Latin scripts
by removing the corresponding sub-plan operators and adding
a Load operator in their place, with the specified HDFS path.
Similarly, in order to store a sub-plan, we only have to add
a Store operator, after the chosen materialization point in the
logical plan.

C. Garbage Collection

We have implemented garbage collection as a separate
component, which can be invoked at will by the user.The
Garbage Collection process includes three main steps: filter
out the obsolete records, delete the corresponding outputs from
the Results Cache and then delete the records from MySQL
database. We have based the garbage collection policy on reuse
frequency and the last access time. Since the frequently reused
records tend to have a more recent access time than the less
reused ones, our garbage collector is only based on the last
access time threshold, which is a user-defined configuration
parameter. For example, if we set the threshold to 5 days, the
records that have not been accessed within 5 days from the
time we ran the garbage collector will be deleted. In this case,
the materialized results that have never been reused will also
be eventually deleted, since their last access value does not
exist. The reuse frequency threshold can also be specified by
user, but we did not use it for our experiments.

VI. EVALUATION

In this section, we describe the environment we used for
evaluating our prototype, present and discuss our results.

A. Environment Setup

We have set up a Hadoop cluster and a MySQL clus-
ter on top of OpenStack. We have used 20 Ubuntu 11.10
virtual machines, each one running Java(TM) SE Runtime
Environment version 1.7.0. We have installed Hadoop version
1.0.4 and configured one Namenode and 15 Datanodes. The
Namenode has 16 GB of RAM, 8 cores and 160GB disk, while
the Datanodes have 4GB of RAM, 2 cores and 40 GB disk.
For convenience, we have installed Pig 0.11 on the Hadoop
Namenode. We have also used MySQL cluster version 7.2.12,
with one manage node, one SQL node and 2 data nodes. Each
node has 4GB of RAM, 2 cores and 40GB of disk space.

B. Data and Queries

We have used Jie Li’s work [21] for running the TPC-H
benchmark in Pig. We have generated the data sets using the
DBGEN tools of the TPC-H Benchmark and have generated
107 GB of data in total. In order to create reuse opportunities,
we have created some new queries by changing substitution
parameters. Finally, we selected 20 queries in total for evalu-
ation, 14 from the original TPC-H Benchmark queries and 6
newly created queries, with reuse opportunity.

898898



Fig. 4: Storing the Result of a Sub-Job

C. Sub-Plan Selection Strategy

We have configured m2r2 to materialize results after the
Join and the CoGroup operators. For logical plan with multiple
inputs, if one input branch changes, then the final Join of all
the inputs must be recomputed. Thus, if the plan has multiple
inputs, we only materialize the intermediate results on each
input branch before the final Join operator. The TPC-H queries
usually contain multiple inputs, such as Query 20. Starting
from the Store operator, Match and Rewrite would not be
performed until reaching the branches. An Example Pig logical
plan showing a selection of a sub-plan to be materialized is
shown in Figure 4.

D. Results

In this section, we present the results of our evaluation.
We have first executed the set of the 20 TPC-H queries (14
original and 6 with modified substitution parameters) in Pig
with and without enabling our materialization framework. We
have run each test at least 5 times, ensuring that standard
deviation of the measurements is under 8%. In the first set
of experiments, we are interested in investigating the overhead
that our materialization framework incurs compared to regular
Pig scripts execution. Although we only discuss here the over-
head regarding total execution time, we are also planning to
look into storage overhead in future experiments. In the second
set of experiments, we focus on quantifying the benefits gained
by reusing materialized results for query execution. Finally, we
also examine the performance of our implementation and the
throughput of MySQL Cluster.

1) Materialization Overhead: Figure 5 shows a comparison
of the execution time for the 14 original queries on Pig without
materialization with the query execution time on Pig with
materialization enabled. We clarify that, in this experiment, no
materialized results were exploited, so that the measurements
depict the pure overhead of the materialization mechanism.
The numbers on x axis are in correspondence with the query
numbers in TPC-H Benchmark. When having materialization
enabled, the overhead consists of the Match and Rewrite al-
gorithm, the optimization of the rewritten logical plan, storing
execution statistics to MySQL Cluster and storing results in
HDFS. We observe that for queries 4, 6, 12, 13 and 17 there is
no overhead or negligible overhead. This is due to the fact that
either no intermediate results were materialized or their size

Fig. 5: Comparison of Query Execution Times on Pig
without Materialization and Query Execution Times with
Materialization. When the materialization mechanism is

enabled, materialized results are produced but not exploited.

Fig. 6: Comparison of Query Execution Times With and
Without Using Sub-Job Materialized Results

was too small. For queries 2, 3, 5, 7, 8, 10, 18 and 20 we notice
very small overhead, from 5% to 25% over the total execution
time. Finally, we observe a quite large overhead for query 18,
around 120%. In this case, the size of the intermediate results
chosen for materialization was very large. We expect this case
not to be so frequent and note that this is a one-time overhead
that will benefit all future matching queries.

2) Benefit of Reusing Plans and Sub-Plans: After having
materialized the plans and selected sub-plans of the first
14 queries, we have run the 6 additional queries containing
common sub-queries. The results are shown in Figure 6. The
figure shows a comparison of query execution times of the
system when using the reuse framework to exploit results of
sub-jobs, with query execution times of the system without
materialization. On the x axis, it is shown in parentheses the
number of the original query from which each new script
was produced. We observe a speedup of 50% - 80% for most
queries, except for query 25, which has the lowest speed up of
30%. This is because we did not modify this particular query
so that it can reuse its most I/O dominant sub-plan.

For the second part of this experiment, we run again all
20 queries, after having stored all relevant data in MySQL
and HDFS, in order to measure the benefit of reusing results
of whole jobs. As expected, the achieved speedup, shown in
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Fig. 7: Speedup When Using Results of Whole Jobs

Figure 7, is tremendous and the execution time is around 30
- 45 sec for all queries. The speedup depends on the base
execution time, the size of the final results and the execution
time variance. In this case, for all queries, the execution
time essentially consists of the time to make a lookup in
the repository and return the location of the stored results
in HDFS. The total execution time of all 20 queries with
materialization disabled is around 753 min and is reduced
to around 13 minutes, when the results of whole jobs can
be reused. This scenario is probably not realistic, but we
believe it is highly indicative of the potential benefits of the
materialization and reuse framework.

3) Non-I/O Overheads: The non-I/O overheads are intro-
duced by the execution of the Match and Rewrite algorithm
and the access to MySQL Cluster. We have found that the non-
I/O overheads are negligible when compared to I/O overheads.
Creating a session to access MySQL cluster takes the longest
time. We have collected around 200 values of session creation
time, 62.6% of them being around 780 ms. The execution time
of the Match and Rewrite algorithm is also at the order of ms.
The measured time includes computing the fingerprints, lookup
of matched plan and MySQL Cluster read/write operations.

VII. RELATED WORK

Restore [11] is a non-concurrent sharing framework built
on top of Pig, which uses materialized results for query
optimization. The main idea is very similar to our work but it
is designed exclusively for Pig on Hadoop and operates on the
physical level. Restore consists of four components: a sub-job
enumerator, a matcher and rewriter, a repository and a sub-job
selector. The sub-job enumerator selects sub-jobs for mate-
rialization and the matcher and rewriter performs match and
rewrite of plans. In our implementation, both functionalities are
performed by the Plan Matcher and Rewriter. The repository is
used to store execution statistics and is analogous to MySQL
Cluster in m2r2. An important implementation difference is
that ReStore stores and matches the plan object, while we use
fingerprints to identify and match plans. Moreover, garbage
collection is not implemented. We have not included an
comparative evaluation of our implementation with ReStore,
because, to the best of our knowledge, the system was not
publicly available at the time this paper was written.

Incoop [22] is a non-concurrent sharing framework that
can reuse results for incremental computation. It detects input
data changes by using content-based chunks instead of fixed-
size chunks to locate files. During the map phase, results of
the unchanged chunks are fetched from the file system and

processed by mapper. During the incremental reduce phase,
Incoop not only stores the final results, but also stores sub-
computation results by introducing an additional phase, called
the contraction phase. During contraction, the input of a reduce
job is split into chunks which are processed by combiners.
Thus, the result is computed by combining the results of
unchanged chunks and the output of the combiners. Unlike
Incoop, we focus at identifying the computations sharing the
same input and not inputs sharing the same computations.

Microsoft has conducted remarkable research on query
optimization by materializing results, DryadInc [6], the Nectar
[7] and Comet [5], being the most representative systems
related to our work. All are built upon the Dryad/DryadLINQ
and like us, assume an append-only file system. DryadInc
is similar to Incoop and focuses on non-concurrent sharing
incremental computation. It uses two heuristics to do in-
cremental computation: identical computation and mergeable
computation. Nectar is a non-concurrent sharing framework,
which aims to improve both computation efficiency and storage
utilization. Regarding computation, it uses a program rewriter
and a cache server to avoid redundant computations, similar to
DryadInc. For data management, it uses a mechanism to store
all executed programs and materialize all computation results.
When the garbage collection process detects the existence of
computation results that have not been accessed for a long
time, it replaces them with the programs that produce them.
Comet enables both concurrent sharing and non-concurrent
sharing. It performs three kinds of optimizations: query nor-
malization, logical optimization and physical optimization. In
query normalization phase, a single query is split into sub-
queries, which can be reused by other sub-queries. Moreover,
each sub-query is tagged with a time stamp, so that the system
can identify whether a set of sub-queries from different queries
that can be executed together. During logical optimization,
common sub-queries are detected and are executed for only
once. Reordering is also enabled, in order to expose more
common expressions. Comet also considers co-location when
replicating materialized results, for reducing network traffic.
During physical optimization, shared scan and shared shuf-
fling are performed. While all the above systems assume
Dryan/LINQ as the programming and execution environment,
in our work, we have designed a language-independent and
extensible framework for storing, managing and using previous
job and sub-job results. Our initial prototype of the m2r2
framework is built on top of the Pig dataflow system and can
be easily extended to support other platforms.

VIII. CONCLUSIONS AND FUTURE WORK

The problem of computation redundancy is very relevant in
big data systems. Several studies have shown large similarities
in data analysis queries and suggest that any type of caching
techniques would greatly benefit data analysis frameworks.

Following the idea of materialized views in relational
databases, we have examined the possibility of porting this
technique in big data environments. In this work, we present
m2r2, a results materialization and reuse framework for high-
level dataflow systems. We have examined and compared
several popular high-level dataflow languages and execution
engines and we have summarized their common properties and
design characteristics. We observe that the majority of systems
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follow very similar designs in their upper layers, namely the
language and logical plan layer, while their physical layers dif-
fer significantly. We, therefore, present a design for integrating
a materialization and reuse framework after the logical layer
of high-level dataflow processing systems.

We have implemented an initial prototype framework on
top of Pig/Hadoop and have used the TPC-H Benchmark to
evaluate our work. The results show that when there exists
sharing opportunity, query execution time can be immensely
reduced by reusing previous results. We also show that the
induced overhead of materialization is quite small, around 25%
of the total execution time without materialization, while non-
I/O overheads are negligible. We note that both benefit and
overhead are very sensitive to framework parameters, such
as sub-job selection strategy and garbage collection policy, as
well as specific workload characteristics.

There are a number of open issues and interesting paths to
explore in the context of this research. First, we plan to extend
m2r2, by decoupling it from the Pig framework and building
a general, component-based and extensible framework, as de-
scribed in Section IV. We then intend to integrate it with other
popular high-level systems. We are also particularly interested
in exploring possibilities of sharing and reusing results among
different frameworks. Furthermore, we believe it is essential
to obtain execution traces from industrial partners and big
organizations, in order to evaluate the gains and overheads of
the materialization framework under more realistic conditions.
We would like to examine how benefits are related to different
workload characteristics, data distributions and cluster sizes.
We intend to minize the imposed overhead, by overlapping
the materialization process with regular query execution, thus
moving it out of the critical path of the execution. Finally, we
also wish to examine the possibility of extending m2r2 in order
to support incremental computations and exploit concurrent-
sharing opportunities.
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C.-C. Kanne, F. Özcan, and E. J. Shekita, “Jaql: A scripting language
for large scale semistructured data analysis.” PVLDB, vol. 4, no. 12,
pp. 1272–1283, 2011.

[4] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: a cross-industry study of mapreduce workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802–1813, Aug. 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2367502.2367519

[5] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou, “Comet:
batched stream processing for data intensive distributed computing,” in
Proceedings of the 1st ACM symposium on Cloud computing, ser. SoCC
’10. New York, NY, USA: ACM, 2010, pp. 63–74.

[6] L. Popa, M. Budiu, Y. Yu, and M. Isard, “Dryadinc: reusing work in
large-scale computations,” in Proceedings of the 2009 conference on

Hot topics in cloud computing, ser. HotCloud’09. Berkeley, CA, USA:
USENIX Association, 2009.

[7] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: automatic management of data and computation in datacen-
ters,” in Proceedings of the 9th USENIX conference on Operating

systems design and implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–8.

[8] J. Goldstein and P.-A. Larson, “Optimizing queries using materialized
views: a practical, scalable solution,” in Proceedings of the 2001

ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’01. New York, NY, USA: ACM, 2001, pp. 331–342.

[9] J. Yang, K. Karlapalem, and Q. Li, “Algorithms for materialized view
design in data warehousing environment,” in Proceedings of the 23rd

International Conference on Very Large Data Bases, ser. VLDB ’97.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp.
136–145.

[10] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection
of materialized views and indexes in sql databases,” in Proceedings

of the 26th International Conference on Very Large Data Bases, ser.
VLDB ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2000.

[11] I. Elghandour and A. Aboulnaga, “Restore: reusing results of mapreduce
jobs,” Proc. VLDB Endow., vol. 5, no. 6, pp. 586–597, Feb. 2012.

[12] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica, “Shark: Sql and rich analytics at scale,” in Proceedings of

the 2013 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp. 13–24.

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: cluster computing with working sets,” in Proceedings of

the 2nd USENIX conference on Hot topics in cloud computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[14] V. Kalavri, V. Vlassov, and P. Brand, “Ponic: Using stratosphere to
speed up pig analytics,” in Euro-Par, 2013, pp. 279–290.
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