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Abstract—Large-scale data processing frameworks, such as
Hadoop MapReduce, are widely used to analyze enormous
amounts of data. However, processing is often time-consuming,
preventing interactive analysis. One way to decrease response
time is partial job execution, where an approximate, early result
becomes available to the user, prior to job completion. The
Hadoop Online Prototype (HOP) uses online aggregation to
provide early results, by partially executing jobs on subsets of
the input, using a simplistic progress metric. Due to its sequential
nature, values are not objectively represented in the input subset,
often resulting in poor approximations or “data bias”.

In this paper, we propose a block sampling technique for
large-scale data processing, which can be used for fast and
accurate partial job execution. Our implementation of the tech-
nique on top of HOP uniformly samples HDFS blocks and
uses in-memory shuffling to reduce data bias. Our prototype
significantly improves the accuracy of HOP’s early results, while
only introducing minimal overhead. We evaluate our technique
using real-world datasets and applications and demonstrate that
our system outperforms HOP in terms of accuracy. In particular,
when estimating the average temperature of the studied dataset,
our system provides high accuracy (less than 20% absolute error)
after processing only 10% of the input, while HOP needs to
process 70% of the input to yield comparable results.

Keywords—MapReduce; online aggregation; sampling; approx-
imate results;

I. INTRODUCTION

Real-time and near real-time large-scale data management
and analysis have emerged as one of the main research chal-
lenges in computing. Modern large-scale analytics applications
include processing web data, transaction and content-delivery
logs, scientific and business data. Popular systems nowadays
use massive parallelism and are usually deployed on clusters
of inexpensive commodity hardware. However, even in such
a highly parallel setting, analyzing big data sets takes a
considerable amount of time. Many data analysis applications
can tremendously benefit from using early approximate results,
which can be available before job completion. Such applica-
tions can tolerate some inaccuracy in the results, while gain-
ing significantly reduced response time. Example applications
include search engines, estimation of Twitter trending topics,
weather forecasts and recommendation systems.

Early accurate approximation techniques have been exten-
sively studied in the context of relational databases. Popular
works suggest using Wavelet transformations [1], [2], [3], [4],

histogram-based approximations to return results with known-
error bounds [5], [6] or sampling techniques [7], [8].

Hadoop [9], an open source implementation of Google’s
MapReduce [10], is the most popular and widely used big
data processing framework. Due to its batch processing nature,
though, it does not allow partial job execution. Even though
existing research in approximate techniques for relational
queries can serve as a starting point, applying such techniques
to MapReduce-style processing frameworks is very challeng-
ing [11], [12], [13]. Apart from the aforementioned batch-
style processing nature, the biggest challenge is posed by the
unstructured data format that such systems need to analyze.
Having sufficient knowledge on the input data structure, types
and cardinalities of a query greatly facilitates the estimation of
result accuracy. Unfortunately, this is not the case in Hadoop,
where data is available as raw files stored in a distributed file
system. Data is transformed into key-value pairs only after
a job has been submitted for execution. Moreover, different
applications can freely choose to interpret input data in differ-
ent ways. MapReduce allows applications to specify arbitrary
user-defined functions to be executed during the map and the
reduce phase, thus making result estimation even harder.

These challenges have not discouraged researchers to try
to integrate approximate result techniques in MapReduce.
However, existing solutions are either far from matching the
success of their database predecessors or are limited to specific
operators and query templates [11], [12], [13]. A notable
research work, MapReduce Online [14] integrates Online Ag-
gregation into the Hadoop processing framework. MapReduce
Online uses pipelining between operators, thus enabling partial
job execution. However, input is read in a sequential manner
and estimation accuracy is based on a simplistic job progress
metric. Consequently, results are often highly inaccurate and
are likely to exhibit data bias. Consider an application that
computes the popularity of a search keyword over some
specified period. It is often the case that some keywords,
representing topics or events, become very popular over a short
period of time or their popularity varies depending on the time
of the day or day in the week. Two examples of keyword search
distributions are shown in Figure 1, generated by Google
Trends. If we estimate popularity using MapReduce Online, the
result will be highly dependent on the selected period of time.
For example, a partial job estimating the average popularity of
the keyword “G1 league” of Figure 1(a), would sequentially
process data from left to right, missing the values represented
in the later spike, thus returning an inaccurate answer.
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(a) Distribution of the Google search ”G1 league” (b) Distribution of the Google search ”Hadoop”

Fig. 1: Popularity Variation Keyword Searches over a 3-month Period

In this paper, we present a statistically profound early
estimation technique as a layer over MapReduce Online. We
propose a simple, yet efficient random sampling technique
implementation, which significantly improves the accuracy of
Online Aggregation. In order to overcome the challenge of the
unstructured nature of data, our implementation performs the
sampling before data is sent to the mapper tasks, as soon as it is
organized in blocks. Moreover, in order to avoid slow random
disk accesses, we propose in-memory shuffling of data blocks,
thus efficiently achieving random sampling and reducing data
bias. We evaluate our implementation in terms of performance
and accuracy, using real-world datasets of various sizes and
distributions. We assess the accuracy of early estimations
and study its dependency over our introduced block-level
sampling technique parameters. We show that our system
delivers highly accurate results, while matching MapReduce
Online in performance.

The main contributions of this paper are as follows.

• A novel, efficient, in-memory block sampling tech-
nique for MapReduce applications.

• A method for integrating the block sampling technique
with a distributed large-scale processing framework.

• An implementation of the block sampling technique
for the Hadoop Online Prototype (HOP).

• An experimental evaluation of the proposed technique,
focused on performance and accuracy, using real-
world datasets and applications.

The rest of this paper is organized as follows. Section
II gives the necessary background for the paper. Section III
presents our block sampling technique and gives details on
the design, architecture and implementation of our solution.
In Section IV, we provide evaluation results and comparison
with Hadoop and the HOP. Section V discusses related work.
We discuss conclusions and future work in Section VI.

II. BACKGROUND

In this section, we briefly review the MapReduce program-
ming model, the MapReduce Online framework and the Online
Aggregation technique.

A. The MapReduce Programming Model

MapReduce [10] is a programming model for large-scale
parallel data processing. In the MapReduce programming
model, one simply has to specify an input path in the
distributed file system, two user-defined functions, map and
reduce, and an output path. Data is read from the file system,

organized in blocks and shipped to parallel map tasks, where
they are parsed into key-value pairs. Each parallel map task
processes one block and applies the used-defined map function
on each key-value pair, producing new pairs as output. The
output pairs are then grouped by key and are sent to parallel
reduce tasks, which apply the reduce function on each group.
The result of each reduce task produces one file in the
distributed file system. MapReduce rapidly became popular, as
it ensures efficient and reliable execution of tasks across large
numbers of commodity machines and successfully manages to
hide the complex details of parallelization, data distribution,
fault tolerance and load balancing from the user.

B. MapReduce Online

MapReduce Online [14] is a modified version of Hadoop
MapReduce, a popular open-source implementation of the
MapReduce programming model. It supports Online Aggre-
gation and stream processing, while also improving utilization
and reducing response time. Traditional MapReduce imple-
mentations materialize the intermediate results of mappers
and do not allow pipelining between the map and the reduce
phases. This approach has the advantage of simple recovery in
the case of failures, however, reducers cannot start executing
tasks before all mappers have finished. This limitation lowers
resource utilization and leads to inefficient execution for many
applications. The main motivation of MapReduce Online is
to overcome these problems, by allowing pipelining between
operators, while preserving fault-tolerance guarantees.

C. Online Aggregation

Online Aggregation [15] is a technique enabling interactive
access to a running aggregation query. In general, aggregate
queries are executed in a batch-mode, i.e. when a query is sub-
mitted, no feedback is given during the query processing time.
Consequently, the accumulated results are returned only after
the aggregation process is completed. The technique enables
partial query processing, without requiring prior knowledge
of the query specifications, such as types of operators and
data structures As a result, users are able to observe the
progress of running queries and control their execution (e.g.
stop query processing in case early results are acceptable). Due
to the lack of knowledge on query and data characteristics,
Online Aggregation relies on random sampling to provide
early results. The system is then able to provide running
confidence intervals along with an estimated query result. A
number of estimators for several types of running confidence
interval computations has been proposed in [16]. Though the
Online Aggregation technique never made a big impact in the
commercial database products, it becomes newly relevant due
to the rising interest in fast large-scale data processing.
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III. THE BLOCK SAMPLING TECHNIQUE

In this Section, we describe the block sampling technique
in detail. We discuss the design goals of our implementation
and the integration of the proposed technique with the MapRe-
duce Online framework.

A. Design Objectives

Providing early accurate query results in big data frame-
works is a very challenging problem. Our vision is to provide
a simple, yet efficient and robust solution, independent of
the specific processing engine. Our design is based on the
following principles:

• Statistical Robustness: The system should be able to
provide a valid estimate of the final job results at any
given time during the job execution. We consider an
estimate valid, if it has been computed over a uniform
random sample of the entire job input dataset. Statis-
tical properties should be guaranteed independently of
the input data format or its underlying distribution.

• Framework Independence: The solution should be
generic, with a simple design, easy to integrate with
any big data processing framework using a block-
based storage or file system, such as HDFS. Thus, we
have chosen to realize the implementation as a thin
independent layer, on top of the MapReduce Online
stack.

• Application Transparency: Existing applications
should be able to benefit from the proposed technique,
without any modification. Furthermore, users should
be able to select whether the new functionality will
be active or inactive during execution.

• Efficiency: The introduced modifications should im-
pose minimal overhead when compared to the original
system. This includes both the MapReduce processing
and data collection phases.

B. System Architecture

Before describing our system architecture, we first briefly
review the MapReduce Online framework execution workflow.
Like in standard Hadoop, in MapReduce Online, data is stored
in HDFS [17] and is read in blocks, which are sent to map tasks
wrapped into Input Splits. Before applying the map function,
mappers parse the Input Splits into key-value records. The
structure of the input data is described by the InputFormat
method. This method selects a valid data reader, which reads
an input file sequentially, parses it and returns the input records
to the map tasks. The output of each map task is stored in an in-
memory buffer and is periodically sent to the reduce tasks. The
reduce tasks collect and merge partial results sent by mappers
and the reduce function is applied to each record in the merged
results file. Based on the initial job configuration, the output
of a reduce task is materialized as part of the final job results
or as a snapshot.

Standard map tasks access one data block and process
it sequentially, one record at a time. In order to obtain a
uniform random data sample, we chose to slightly modify
the read operation and have each call to the record reader

Fig. 2: The Block Sampling Technique Steps

return a random record from the spill file. The implementation
challenge here comes from the fact that common distributed
file systems, like HDFS, are highly optimized for sequential
reads, while random accesses are very expensive. Furthermore,
the record reader should have sufficient prior information about
the spill file, i.e., how many records each data block stores,
which is not available at this stage of the workflow. In order to
avoid expensive random disk accesses, we chose to process file
splits in memory as shown in Figure 2. Each map task retrieves
a number of record blocks from several data splits (1). The
accessed record blocks are stored in memory (2), shuffled in-
place in order to reduce possible data bias (3) and then sent to
the map function (4). This way, block-level sampling reduces
the I/O related overhead, which is inevitable when accessing
multiple files in the distributed file system. We are convinced
that the shuffling phase is also necessary, as it reduces the
bias of collected data and guarantee the statistical properties of
partial results (taken at any time during the execution). Finally,
the input data structure remains consistent, so there are no
MapReduce applications based constraints.

C. Implementation

We have implemented a prototype of the proposed block
sampling technique on top of HOP, that we call HOP-S.
The source code is publicly available 1. In this section, we
discuss implementation details. Likewise the described design
and implementation process can be split into two phases: bias
reduction and sampling.

1) Bias Reduction: Data randomization is a necessary step
in order to reduce the overall bias of the data and ensure
that the randomness property is guaranteed at any time during
the execution. We have implemented the data randomization
phase as part of the initial reading process, after running
several tests and verifying that it is an efficient solution. The
functionality can be enabled by setting up a newly introduced
MapReduce daemon parameter. The list of supplementary
Hadoop framework parameters is given in Table I.

The bias reduction process is done in the following steps:

1) Access phase. During the initial step, the map tasks
retrieve the file URI from the HDFS NameNode and
access the specified file. By default, a file is read as
a stream of bytes and parsed into lines of text (based
on specified separator characters), text is then parsed
into records and finally sent to the map user-defined

1https://github.com/vasia/HOP-S

252



TABLE I: Newly Introduced Configuration Parameters

Parameter Description

io.file.shuffle (boolean) Input records shuffling method for data bias re-

duction.

io.split.maxsubsplit (int) Set the number of split files from which block-

level sample will be created. Default value = 4.

io.split.insort (boolean) If enabled, split files are shuffled before sampling

method is applied.

function. We have introduced a new data collection
method, which processes the blocks of the entire
input split and stores them in the local task’s memory.
Further processing is delayed until the next described
shuffling phase is completed.

2) Shuffling phase. The input data is stored in a cus-
tom in-memory data structure. Its design focuses on
optimizing data randomization: a number of bytes
(corresponding to a single line of text) retrieved
from HDFS is stored as a tuple, with an additional,
randomly generated, integer value in range of [0...231

- 1]. The randomly generated integer value facilitates
the shuffling: stored data is sorted according to the
assigned integer value, thus returning randomly shuf-
fled input data. Our tests showed that 512 MB of
memory allocated to TaskTracker child processes is
sufficient for the default 64 MB block size of HDFS.

3) Processing phase. Even though storing the shuffled
data to disk would enable us to reuse the initial
Hadoop data reading function, this step would intro-
duce unnecessary I/O overhead. Therefore, we have
developed an additional read method, which is used
when the data randomization is enabled. It skips
the data access and pre-processing steps and instead
serves the line of text from local memory.

2) Block-level sampling: The block-level sampling requires
several modifications of the map phase, mostly related with
the storage system access. The processes of file sampling and
processing are presented in detail next.

By default, each mapper retrieves and processes a single
data block. Our aim is to force a map task to fetch and process
data from multiple HDFS data blocks, thus emulating data
sampling. The initial file information is acquired by issuing the
request to HDFS. We introduce the RandomFileInputFormat
which stores each file’s information in local memory. Initial
data splits are then divided into equally-sized blocks, to be
processed by the separate map tasks. This approach requires
a minimum number of random accesses (one-per-block), re-
ducing the cost of HDFS I/O operations. We experimentally
investigate the overhead of I/O operations in Section IV.

The number of blocks each split is divided into is deter-
mined in the MapReduce job configuration. In case the data
split cannot be divided into equal-sized parts, the sampling
process will determine the optimal sizes for each block ensur-
ing that mappers receive a comparable workload, in terms of
input size. Each map task will be responsible for processing
a number of blocks from separate splits, equal to the number
of parts each split is divided to. For example, if the user sets
the io.split.maxsubsplit parameter to 6, map tasks will process
6 blocks of data from 6 separate input splits. Furthermore,
the list of input splits, obtained in the data access phase, can
be shuffled by setting the io.split.insort parameter, before the

sampling process starts.

We have additionally developed a RandomFileSplit format,
necessary for storing the complete block-level samples infor-
mation, including URIs of the input splits, data offsets and
block lengths. This information is used to query the the HDFS
NameNode during the data access phase, thus enabling map
tasks to sequentially open several input data streams.

Finally, we have implemented two additional InputFormat
methods, in order to enable processing of the block-level sam-
ples, which are produced during the sampling phase. There are
two main differences between the default and our introduced
formats. First, our methods are able to access multiple input
splits and read the blocks of data from each of them. This
process is cyclic: as one data stream is consumed (certain
number of bytes is read), a next one is initiated, until the
whole sample is processed. Furthermore, block-level samples
can start or end in the middle of a text line of the initial
dataset, since the sampling phase relies solely on the stored
file’s meta-data. This issue is addressed with a simple rule:
a task that receives a data block with the beginning of text
line will process the entire line, otherwise, it will skip that
fragment of the line.

IV. EVALUATION

We have evaluated the block sampling technique and our
implementation on top of the Hadoop Online Prototype, HOP-
S. This section presents the results of our evaluaton.

A. Evaluation Environment and Datasets

Our setup consists of an OpenStack cluster, deployed on
top of 11 Dell PowerEdge servers, each with 2 x Intel Xeon
X5660 CPUs (24 cores in total), 40 GB of memory and 2 TB of
storage. We ran all experiments using 8 large-instance virtual
machines, each having 4 virtual CPUs, 8 GB of memory and
90 GB of disk space. Nodes run Linux Ubuntu 12.04.2 LTS OS
and have 1.7.0 14 version JavaTM SE Runtime Environment
installed. We configured Hadoop, HOP and HOP-S to use up
to 17 map tasks and 5 reduce tasks per job, HDFS block size
of 64MB and set the data replication factor set to 2.

For our experiments, we retrieved and pre-processed a
number of varying size datasets. For the performance evalua-
tion, we acquired weather data for several decades, available
from the National Climatic Data Center ftp server 2. Data
is present for each year separately, (available years 1901 to
2013) and contains log files from a number of different weather
stations. The logs were compressed and stored separately, per
station. As a pre-processing step, we merged each weather
station log files into a single yearly weather dataset. The size
of aggregated log varies from 2 to 10 GB, depending on the
year of measurement. In total, we acquired 21 aggregate log
files consisting of 100 GB of data.

For the accuracy evaluation experiments, we prepared
several datasets with different data distributions of size be-
tween 11 and 25 GB. The first dataset is an extract of the
previously mentioned 100GB weather dataset and consists of
10 arbitrarily selected files of 25 GB size in total. The yearly

2ftp://ftp3.ncdc.noaa.gov/pub/data/noaa/

253



log files of the each weather station are merged sequentially,
one after the other. For our second experiment, we reuse this
dataset, after sorting it according to the date and time of the
measurement, in order to create a dataset that would allow
us to test our technique’s bias reduction. Finally, we use a
dataset consisting of the complete Project Gutenberg e-books
catalog 3. It contains 30615 e-books in .txt format, merged into
a single 11 GB size file. Overall, we closely selected each of
the described datasets in order to cover the wide range of data
distributions and evaluate the accuracy of estimations returned
by the evaluated systems.

B. Results

First, we present experiments to measure performance and
investigate possible sources of overhead. Next, we evaluate
the estimation accuracy of the proposed technique. We try to
identify sensitivity factors and how they influence the results’
accuracy.

1) Performance Evaluation: We first evaluate the influence
of the snapshot materialization frequency, namely how often
estimations will be materialized into HDFS, on the overall
system performance. This is an overhead present in both HOP-
S and HOP and it is usually nullified by the gains provided by
pipelining [14]. Note that both bias reduction and sampling are
disabled in this experiment. For this test, we set the maximum
memory size available for map and reduce tasks to 512 MB
per child. Our results are displayed in Figure 3(a). Each value
is obtained by averaging the results of 3 to 5 executions over
an extended period of time, to reduce the influence of cluster
performance fluctuations. Overall, the results show that there
is a moderate execution overhead (up to 35%) in the case of
frequent snapshots. This overhead mainly occurs due to the
reduce tasks being unable to process the output of map tasks
during the period of snapshot materialization to the HDFS file
system. Based on our observations, we recommend to set the
snapshot materialization parameter to every 25% of processed
input, as it has less overhead (about 15%) in comparison to
executions with higher snapshot frequency settings. However,
as we show in the next section, even earlier estimations of
various MapReduce jobs can have high accuracy.

For the second experiment, we enable bias reduction and
compare the performance of HOP-S to Hadoop and MapRe-
duce Online. For this task, we prepared seven different size
datasets, varying from 5,5GB to 100GB, which were used
in the aggregate average temperature job execution. In order
to minimize the influence of clusters performance variation,
we ran multiple executions over each dataset and averaged
the results, which are shown in Figure 3(b). We demonstrate
the evaluation results of three systems: Hadoop (ver. 0.19),
MapReduce Online and HOP-S with bias reduction enabled.
The measured performance difference between the standard
Hadoop framework and the other two frameworks is insignif-
icant, after taking into account the overhead of frequent early
result snapshots. Note that the snapshot frequency is set to
10% for all tests. We further investigate how the bias reduction
process performance depends on system parameters. While the
input data size is relatively small, bias reduction has little to no
overhead. However, in the case of large inputs, the overhead

3http://www.gutenberg.org/

noticeably increases, up to 20% over execution time with no
bias reduction. Such results can be explained by the choice of
system parameters, namely the relatively low number of map
tasks, resulting in additional processing time being aggregated
over a large number of sequentially processed data blocks each
JVM executes a large number of map tasks sequentially). We
strongly believe, though, that the shuffling phase is the main
source of the inspected overhead, when input data records
are arranged by the assigned random prefix. However, there
is another source of potential overhead, not reflected in the
present figure. Before sorting, all records are stored in the
local memory of the processing nodes. The amount of required
memory depends on the size of the HDFS data blocks. As a
rule of thumb, we recommend increasing the available memory
of each node to 4 times the blockSize.

In the last experiment, we measure the overhead of the
sampling process to the overall job execution time. We use
the 100 GB size input dataset, on which we ran an average
temperature computation MapReduce application, using HOP-
S and also the MapReduce Online framework. We performed
several tests varying the block-level sampling rate. Results
are shown in Figure 3. We observe that there is a notice-
able overhead in comparison to job execution time over the
MapReduce Online framework, which is growing with the
number of block-level samples. We identify the following
overhead sources: the sample generation process, the block-
level samples movement across the nodes and the increased
number of random accesses to HDFS, as there is a linear
dependency between the number of additional random accesses
introduced and the chosen sampling rate.

2) Accuracy Evaluation: In this section, we discuss ex-
periments which evaluate the precision of early results, as
produced by MapReduce Online, with and without using our
proposed technique. We define accuracy as the absolute error
between the early returned result of a partially executed job and
the result returned after processing the entire dataset. We use
the two previously described weather datasets with different
distributions of values.

For the first experiment, we use a 25GB dataset of ten
yearly aggregate logs of weather stations. We ran the MapRe-
duce application that measures the average yearly temperature
on Hadoop, HOP and HOP-S. First, we evaluate the variation
of estimation accuracy over the number of block-level samples
processed by each map task. The estimations were materialized
and stored to HDFS every 10% of the processed input data.
For this test we enabled both data sorting and sampling. Figure
4(a) shows the aggregated estimation results of 2 randomly
selected yearly log files. The graph illustrates the absolute error
range variation over the number of block-level samples given
for each map task. Each box defines the 25th/75th percentiles,
while the drawn line shows the minimum and maximum values
of the measured absolute error. Each column consists of 8
values obtained after 10 up to 80% of input data is processed.
We observe that the default setting of 4 block-level samples
per map task is too conservative. When a low number of
block-samples is processed by each map task, there is a higher
probability that one or few of yearly datasets will be present
to a lesser extent, thus the estimation accuracy might suffer.
On the other hand, results obtained in case of 10 to 16 blocks
per map are very accurate even after processing just 10% of
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(a) Snapshot Frequency Overhead (b) Bias Reduction Overhead (c) Sampling Overhead

Fig. 3: Evaluation Results: Performance

the input. At later stages of the job execution, the estimations
become relatively accurate independently of the number of
processed blocks. Figure 4(b) shows the results for the same
experiment ran on the sorted weather data. The main difference
is the values distribution of the data. If this dataset is read
sequentially (as in MapReduce Online), winter months will be
processed first. In comparison to the unsorted weather data,
there are only slight variations in the maximum values of the
error range. However, the accuracy of estimations converges
promptly. After 20% of processed input, estimations have very
low errors. Based on these results, we set 10 samples per block
for the rest of the experiments.

Figure 5(a) shows the results for the yearly average tem-
perature calculation application, over varying-size processed
inputs. The gray boxes correspond to execution of the appli-
cation on the Hadoop Online system, while the colored boxes
correspond to executions of the application on HOP-S. For
Hadoop Online, some of the values have 100% error rate. This
means that the system did not provide any estimation for a par-
ticular year. Also, all ten estimations were available only after
40% of the input data was processed. Furthermore, we notice
that the system mostly processes blocks of one or few input
files at a time, therefore resulting in a maximum error value
between 40 to 70 percent of the processed input data which
does not change. Overall, we conclude that Hadoop Online
does not provide statistically meaningful results. Some of the
early estimations might be reasonably accurate even at early
stages of processing, while others required the whole input data
to be processed in order to return a fairly accurate estimation.
On the other hand, HOP-S gives promising results. Even after
processing only 10% of the input, the maximum value of
the absolute error is around 30%, with 25th/75th percentiles
being less than 20 %. Furthermore, accuracy steadily increases
with the amount of processed input. We also notice that even
at 10% of processed input, average temperature estimations
are available for all 10 years, whereas the Hadoop Online
framework required 40% of input to do the same. Similar
results were observed when running the same experiment over
logs of the weather data, sorted by date. The results are
illustrated in Figure 5(b).

In a final experiment, we evaluated the estimation accuracy
of a top-100 words application MapReduce job, for which
we used the e-books dataset described in Section IV-A. One
important difference from the previous datasets is that it has
a Zipfian distribution: a small number of words occur very

frequently, while many others occur rarely. We measured the
number of missed words (out of the top-100 final words)
over the part of processed input data and observed that even
after 10% of the processed input, both MapReduce Online and
our designed system give fairly precise results, with up to 7
misses. As the segment of the processed input data grows,
the number of missed words is reduced. We observed close to
no difference in estimations of the HOP and our system. Due
to the Zipfian distribution, the block-level sampling technique
does not provide tangible benefit over sequential processing,
however, it still offers a great advantage over traditional batch-
processing, since complete processing is not necessary.

V. RELATED WORK

A. Large-Scale Parallel Data Processing Systems

Adapting the approximation techniques, previously used
in databases, to large-scale, distributed processing systems is
not straight-forward. Major challenges include the unstructured
nature of data, the shared-nothing distributed environments
such systems are deployed on and the need to support more
complex analysis operations than simple aggregations.

Apart from MapReduce Online, which we briefly cover in
Section II, there have been several other important contribu-
tions towards the direction of providing fast, approximate yet
accurate results in large-scale MapReduce-like systems.

The EARL library [13] is an extension to the Hadoop
framework and focuses on accurate estimation of final results,
while providing reliable error estimations. It uses the bootstrap
technique, which is applied to a single pre-computed sample.
Consequently, numerous subsamples are extracted and used
to compute the estimate. The accuracy of estimation can
be improved with an expansion of the initial sample size
and increase in number of used subsamples. EARL allows
estimations for arbitrary work-flows and requires only minimal
changes to the MapReduce framework. However, efficiency is
very dependent on the job and the provided dataset properties
and distribution. The bootstrap technique often proves to be
very expensive and would result in even slower execution than
running the complete job without sampling.

The BlinkDB [11] approximate query engine creates and
uses pre-computed samples of various sizes to provide fast
answers. It relies on two types of samples: large uniform
random and smaller multi-dimensional stratified. Queries are
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(a) Unsorted Weather Data (b) Sorted Weather Data (by date)

Fig. 4: Evaluation Results: Error Variation over Sampling Rate

(a) Unsorted Weather Data (b) Sorted Weather Data (by date)

Fig. 5: Evaluation Results: Error Range of Average Temperature Estimations

evaluated on a number of selected samples and an initial
estimate is produced. BlinkDB is based on the predictable
query column sets (QCS) model, so it assumes that a constant
set of data columns, used for group or filter predicates, exist in
the stored datasets. As a result, the system can estimate results
of standard aggregate queries easily. More complex queries,
including arbitrary joins, are currently not supported. In case
the accuracy or time constraints of a query are not met, larger
or smaller samples can be selected. The accuracy of various
queries estimation depends on the composition and sizes of
stored samples. However, samples creation (primarily strati-
fied) is an expensive task and can take considerable amount of
time. Consequently, the processing of newly arrived data to be
included in the preceding samples can be delayed. On the other
hand, our designed system can return continuously improving
accuracy estimates without the additional pre-processing or the
requirement to previously store samples. Further, it does not
require pre-assumptions made in the predictable QCS model.

Another important work builds Online Aggregation [12] for
MapReduce jobs, using the Hyracks execution engine [18]. The
authors argue that Online Aggregation is newly relevant for
the Cloud Computing cost model, as it can save computations
and therefore money. They aim to adjust the classic work of
databases in a MapReduce environment and mainly focus on
facing the challenges that rise because of the shared-nothing
cluster environment. In such a setup, where failures are also
quite frequent, it is hard to guarantee the statistical properties

of the partially processed input. They propose an operational
model and a Bayesian framework for providing estimations and
confidence bounds for the early returned results. However, in
order to guarantee such properties, the system only supports
applications conforming to a specialized interface and limited
to the set of common aggregate functions.

Finally, Facebook’s Peregrine [19] is a distributed low-
latency approximate query engine, built on top of Hive [20]
and HDFS. It supports a subset of operators and provides
approximate implementations for some aggregate functions. A
user has to explicitly use the approximate functions in their
query and can get terminate it before the execution is complete.
After termination, information is provided on the number of
scanned records and possible failures that occurred during
execution. In order to provide fast results, Peregrine uses one-
pass approximate algorithms and an in-memory serving tree
framework for computing aggregations.

VI. CONCLUSIONS AND FUTURE WORK

The amount of data organizations and businesses store and
process everyday is increasing with tremendous rates. In order
to analyze data efficiently and at a low cost, the academic and
industry communities have relied on data-parallelism and have
developed distributed, shared-nothing processing architectures
and frameworks, like MapReduce. However, even with these
highly distributed solutions, query latency is still very high.
Data analysts often have to wait for several minutes or even
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hours to acquire a result. In many cases, however, quite
accurate answers can be returned after only processing a
small subset of the available data and great value can be
extracted by only partial results. Several analysis applications
can tolerate approximate answers to queries and highly benefit
from lower latency. Such a functionality can also be used for
rapid prototyping or pattern discovering in huge datasets.

Query result approximation is not a novel idea. There has
been extensive research on the topic from the database commu-
nity in the past. The data explosion that we are experiencing
today, leaves us no choice but to reconsider approximation
techniques, in the context of large-scale MapReduce-style
systems, in order to reduce query response times. However,
adoption of existing techniques is not straight-forward and
proves to be very challenging. In the MapReduce world,
data is not organized in tables or properly structured, but is
often schema-less and stored in raw files. Moreover, analysis
applications are usually much more complex than simple
aggregations and can use arbitrary user-defined functions.

In this paper, we present the block-level sampling tech-
nique, which can provide a random sample of the provided
dataset, without requiring pre-processing or additional storage
space. We integrated block-level sampling with the MapRe-
duce Online framework and we show that, together with an
additional bias reduction technique, it can provide accurate
estimations of results, without requiring a-priori knowledge of
the query. In order to achieve that, data is sampled before the
map stage and is shuffled in-memory, in order to introduce
randomization. As a result, map tasks still can access data
sequentially, avoiding the overhead of random disk accesses.

The evaluation of HOP-S shows superb results over the
standard MapReduce Online framework, in terms of the early
aggregate jobs estimations accuracy. Consequently, the exe-
cution time of most aggregate applications can be reduced
noticeably, while still maintaining the high accuracy of the
estimations. We demonstrate, that our system can estimate
the average temperature of 100GB weather dataset with as
low as 2% error, up to 6 times faster than a complete job
execution time. However, we also show that the benefit varies
and is highly dependent on the data distribution. For example,
in the case of Zipfian distribution, MapReduce Online can
return quite accurate results, even with sampling disabled.
Nevertheless, we display that early estimations of the most
frequent values in such datasets can be very accurate, thus the
complete process of the input data is not always necessary. An
interesting alternative metric that is subject of our future work,
is the time needed to achieve a certain accuracy level.

Several open and interesting issues remain to be explored
in the context of our work. First, we would like to explore the
feasibility of integrating statistical estimators into our system,
in order to provide error bounds or similar useful feedback
to users. We are also interested in trying to automate the
sampling process and optimize the strategy, based on system
configuration parameters, such as block size and available
memory. The automatic process would fine tune the sampling
process to reach the best possible performance for the provided
system configuration. Another direction would be to investi-
gate alternative sampling techniques, or even wavelet-based
early approximation techniques and explore the possibility for
integration with large-scale processing frameworks.
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