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Abstract—MapReduce has recently gained great popularity
as a programming model for processing and analyzing massive
data sets and is extensively used by academia and industry. Sev-
eral implementations of the MapReduce model have emerged,
the Apache Hadoop framework being the most widely adopted.
Hadoop offers various utilities, such as a distributed file system,
job scheduling and resource management capabilities and
a Java API for writing applications. Hadoop’s success has
intrigued research interest and has led to various modifications
and extensions to the framework. Implemented optimizations
include performance improvements, programming model ex-
tensions, tuning automation and usability enhancements. In this
paper, we discuss the current state of the Hadoop framework
and its identified limitations. We present, compare and classify
Hadoop/MapReduce variations, identify trends, open issues and
possible future directions.
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I. INTRODUCTION

Recent advances in technology have allowed organizations

to collect extremely large amounts of data, anticipating

high value in analyzing them. “Big Data” management and

processing has been one of the biggest challenges of our

era. Current approaches consist of processing systems de-

ployed on large amounts of commodity machines and exploit

massive parallelism to efficiently analyze enormous datasets.

The most successful system is the Google’s MapReduce

framework [1], which hides the complexity of data distribu-

tion, communication and task scheduling and offers a sim-

ple programming model for writing analytical applications,

while also providing strong fault-tolerance guarantees.

Several implementations of the MapReduce program-

ming model have been proposed, with open-source Apache

Hadoop framework [2] being the most widely adopted. Apart

from the MapReduce programming model, Hadoop offers

various other capabilities, including a distributed file system,

HDFS [3] and a scheduling and resource management layer.

Despite its popularity, the MapReduce model and its Hadoop

implementation have also been criticized [4] and have been

compared to modern parallel database management systems

(DBMSs), in terms of performance and complexity [5].

There have been extensive studies on MapReduce charac-

teristics, identifying a set of shortcomings of the model

and current implementations [6], [7], [8]. Features such

as the static map-shuffle-reduce pipeline, the frequent data

materialization (writing data to disk), the lack of support for

iterations and state transfer between jobs, the lack of indexes

and schema and sensitivity to configuration parameters have

been confirmed to contribute negatively in its performance,

for certain classes of applications.

Numerous variations of Hadoop MapReduce have been

developed during the last few years, proposing performance

improvements, programming model extensions, automation

of use and tuning. Each one of the extensions deals with one

or more shortcomings of the vanilla Hadoop MapReduce

implementation. The amount of these variations has grown

significantly, making it hard for users to choose the appropri-

ate tool. Existing surveys summarize some of these systems,

however, there exists no complete study categorizing them

and clarifying the trade-offs for a potential user. Having all

these alternatives available, users either need to spend a lot

of time researching which system would best fit their needs

or resort to common Hadoop installations, even if such a

choice would be suboptimal for their problem.

In this survey, we examine existing MapReduce imple-

mentations based on Hadoop. The scope of our study is

strictly limited to systems extending or enhancing Hadoop

and does not include more generalized data-flow systems,

such as Dryad [9], Spark [10] and Stratosphere [11]. The

contributions of this paper are:

• An overview of the state-of-the art in

Hadoop/MapReduce optimizations;

• A comparison and classification of existing systems;

• A summary of the current state of the research field,

identifying trends and open issues;

• A vision on possible future directions.

The rest of this paper is organized as follows. In Section

II, we provide background on Hadoop/MapReduce and

present the current state of the project. In Section III, we

discuss the limitations of the model and implementation, as

demonstrated in recent literature. Section IV makes a catego-

rization and comparison of existing MapReduce variations.

In Section V we focus on trends and open issues and propose

future directions. We conclude in Section VI.

II. BACKGROUND

This section gives an introduction to the MapReduce

model and its open-source implementation, Hadoop.
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A. The MapReduce Programming Model

The MapReduce programming model is designed to ef-

ficiently execute programs on large clusters, by exploiting

data parallelism. A distributed file system is deployed on the

same machines where the applications run, so that execution

can benefit from data locality, by trying to move computation

where the data reside. The model is inspired by functional

programming and consists of two second-order functions,

Map and Reduce, which form a static pipeline, where the

Map stage is followed by the Reduce stage.

Data are read from the distributed file system, in the form

of user-defined key-value pairs. These pairs are then grouped

into subsets and serve as input for parallel instances of the

Map function. A user-defined function must be specified and

is applied to all subsets independently. The Map function

outputs a new set of key-value pairs, which is then sorted by

key and partitioned according to a partitioning function. The

sorted data feed the next stage of the pipeline, the Reduce

function. The partitioning stage of the framework guarantees

that all pairs sharing the same key will be processed in the

same Reduce task. In a similar way, a user-defined function

is applied to the pairs, producing one output file per Reduce

task, in the distributed file system.

One of the important advantages of the above schema is

that the parallelization complexity is handled by the frame-

work. The user only has to write the first-order functions that

will be wrapped by the Map and Reduce functions. However,

this advantage often comes with loss of flexibility. Each job

must consist of exactly one Map function followed by an

optional Reduce function, and steps cannot be executed in a

different order. Moreover, if an algorithm requires multiple

Map and Reduce steps, these can only be implemented as

separate jobs, and data can only be transferred from one job

to the next, through the file system.

In the initial implementations of Hadoop, MapReduce is

designed as a master-slave architecture. The JobTracker is

the master managing the cluster resources, scheduling jobs,

monitoring progress and dealing with fault-tolerance. On

each of the slave nodes, there exists a TaskTracker process,

responsible for launching parallel tasks and reporting their

status to the JobTracker. The slave nodes are statically

divided into computing slots, available to execute either

Map or Reduce tasks. The Hadoop community realized the

limitations of this static model and recently redesigned the

architecture to improve cluster utilization and scalability.

The new design, YARN is presented in section II-C.

B. HDFS

HDFS [3] is the distributed file system used by the

Hadoop project. Hadoop MapReduce jobs read their input

data from HDFS and also write their output to it. HDFS has

been very popular because of its scalability, reliability and

capability of storing very large files.

There are two types of nodes in HDFS: the DataNodes

and the NameNode. Typically, a Hadoop deployment has

a single NameNode, which is the master and a set of

DataNodes, which serve as slaves. The main responsibility

of a DataNode is to store blocks of data and to serve them

on request over the network. By default, data blocks are

replicated in HDFS, for fault-tolerance and higher chance

of data locality, when running MapReduce applications. The

NameNode is unique in an HDFS cluster and is responsible

for storing and managing metadata. It stores metadata in

memory, thus limiting the number of files that can be stored

by the system, according to the node’s available memory.

C. YARN

YARN, Yet Another Resource Negotiator, is included in

the latest Hadoop release and its goal is to allow the system

to serve as a general data-processing framework. It supports

programming models other than MapReduce, while also

improving scalability and resource utilization. YARN makes

no changes to the programming model or to HDFS. It

consists of a re-designed runtime system, aiming to elim-

inate the bottlenecks of the master-slave architecture. The

responsibilities of the JobTracker are split into two different

processes, the ResourceManager and the ApplicationMaster.

The ResourceManager handles resources dynamically, using

the notion of containers, instead of static Map/Reduce

slots. Containers are configured based on information about

available memory, CPU and disk capacity. It also has a

pluggable scheduler, which can use different strategies to

assign tasks to available nodes. The ApplicationMaster is

a framework-specific process, meaning that it allows other

programming models to be executed on top of YARN, such

as MPI or Spark [12]. It negotiates resources with the

ResourceManager and supervises the scheduled tasks.

III. HADOOP/MAPREDUCE LIMITATIONS

Even though YARN manages to overcome the well-

known limitations of the Hadoop scheduling framework

and improves the scalability and resource utilization,

there still exist several opportunities for optimizations in

Hadoop/MapReduce. Having studied the recent literature,

we group the optimization opportunities in three main cate-

gories: performance issues, programming model extensions

and usability enhancements. In this section, we discuss the

limitations which lead to these optimization opportunities.

A. Performance Issues

Even though Hadoop/MapReduce has been praised for

its scalability, fault-tolerance and capability of processing

vast amounts of data, query execution time can often be

several hours [13]. This is orders of magnitude higher than

what modern DBMSs offer and prevents interactive analysis.

Performance highly depends on the nature of the application,

but is also influenced by inherent system characteristics and
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design choices. A quite large percentage of the execution

time is spent in task initialization, scheduling, coordination

and monitoring. Moreover, Hadoop/MapReduce does not

support data pipelining or overlap of the Map and the

Reduce phases. Data materialization for fault-tolerance and

intensive disk I/O during the shuffling phase have also been

found to significantly contribute to the overall execution

time. It has been suggested that Hadoop performance would

benefit from well-known optimization techniques, already

used by database systems and query optimizers. Even though

Hadoop lacks a built-in optimizer, many of the suggested

techniques have been implemented in Hadoop extensions, as

discussed in the next section. Optimizations include index

creation [14], data co-location [15], reuse of previously

computed results [16], exploiting sharing opportunities [17],

mechanisms dealing with computational skew [18] and tech-

niques allowing early approximate query results.

B. Programming Model Issues

Developing efficient MapReduce applications requires ad-

vanced programming skills and deep understanding of the

system architecture. Common data analysis tasks usually

include processing of multiple datasets and relational op-

erations, such as joins, which are not trivial to implement

in MapReduce. Therefore, the MapReduce programming

model has been often characterized as too ”low-level” for

analysts used to SQL-like or declarative languages. Another

limitation of the programming model comes from its ”batch”

nature. Data need to be uploaded to the file system and even

when the same dataset needs to be analyzed multiple times,

it has to be read every time. Also, the computation steps

are fixed and applications need to respect the map-shuffle-

sort-reduce sequence. Complex analysis queries are realized

by chaining multiple MapReduce jobs, having the results

of one serving as the input for the next. These character-

istics make the model inappropriate for certain classes of

algorithms. Various applications, including machine learning

algorithms and graph processing, often require iterations

or incremental computations. Since MapReduce operators

are stateless, MapReduce implementations of iterative algo-

rithms require manual management of state and chaining of

iterations. Abstractions and high-level languages, have been

built to facilitate MapReduce application development [19],

[20]. Also, a set of domain-specific systems have emerged,

extending the MapReduce programming model. We present

these systems in section IV-B.

C. Configuration and Automation Issues

The third category of optimizations are related to auto-

matic tuning and ease of use. There are numerous configura-

tion parameters to set when deploying a Hadoop MapReduce

cluster. Performance is often quite sensitive to them and

users usually rely on empirical ”rules of thumb”. Options

include the number of parallel tasks, the size of the file

blocks and the replication factor. Proper tuning of these

parameters requires knowledge of both available hardware

and workload characteristics, while misconfiguration might

lead to inefficient execution and underutilization of resources

[13], [21]. Hadoop variations dealing with automatic tuning

are discussed in Section IV-C.

IV. HADOOP/MAPREDUCE VARIATIONS

Some of the optimizations discussed in this Section can

have multiple effects, therefore, some of the presented

systems could fall into more than one category. At this point,

we need to stress that our categorization and comparison is

based on the primary motivation of each system examined.

A. Performance Optimizations

Operator Pipelining and Online Aggregation: One of

the first successful Hadoop extensions is MapReduce On-

line [22]. It improves performance by supporting online

aggregation and stream processing, while also improving

resource utilization. The motivation of MapReduce Online

is to enable pipelining between operators, while preserving

fault-tolerance guarantees. Pipelining is implemented both

between tasks and between jobs. In the initial design, each

reducer opens one TCP connection to each mapper. When a

mapper computes a record, it determines to which partition

it belongs and sends it via the appropriate socket. Opening a

large number of TCP connections proved to be problematic,

so the design was refined to use a “mixed” push/pull ap-

proach. Each reducer is allowed to open a bounded number

of TCP connections, while pulling data from the rest of the

mappers in the traditional Hadoop way. One problem that

arises due to pipelining, is the nullification of the effect

of combiners. To solve this problem, MapReduce Online

buffers intermediate data up to a specified threshold, applies

the combiner function on them and spills them to disk. As

a side-effect of this design, early results of the jobs can be

computed making approximate answers to queries available

to users. This technique is called online aggregation and

returns useful early results much faster than final results.

Simply by applying the reduce function to the data that the

reducer has seen so far, the system can provide an early

snapshot. In combination to the job progress metrics, a user

can appromixate the accuracy of the provided snapshot.

Approximate Results: A more sophisticated approach to

approximate results in MapReduce is proposed by Laptev et

al. [23]. The EARL library is a Hadoop extension which

allows incremental computations of early results using sam-

pling and the bootstrapping technique. An initial sample of

the data is obtained and the error is estimated using boot-

strapping. If the error is too high, the sample is expanded

and the error recomputed. This process is repeated until the

error is under a user-defined threshold. In order to implement

EARL, Hadoop was extended to support dynamic input size

expansion. First, pipelining between mappers and reducers
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was implemented, similarly to MapReduce Online, so that

reducers can start processing data as soon as they become

idle. Then, mappers are kept active and reused instead of

being restarted in every iteration. This modification saves a

significant amount of setup time. Finally, a communication

channel was built between mappers and reducers, so that

the termination condition can be easily tested. EARL is an

addition to the MapReduce API and existing applications

require modifications in order to exploit it.

Indexing and Sorting: Quite a few of the proposed op-

timizations for Hadoop/MapReduce come from well-known

techniques of the database community. Long query runtimes

are often caused due to lack of proper schemas and data

indexing. Hadoop++ [14] and HAIL [24] are two remarkable

attempts dealing with this matter. Hadoop++ is a transparent

addition to Hadoop implemented using User Defined Func-

tions (UDFs). It provides an indexing technique, the Trojan

Index, which extends input splits with indexes at load time.

Additionally to the Trojan Index, the paper also proposes

a novel Join technique, the Trojan Join, which uses data

co-partitioning in order to perform the join operation using

only map tasks. HAIL proposes inexpensive index creation

on Hadoop data attributes, in order to reduce execution

times in exploratory use-cases of MapReduce. It modifies

the upload pipeline of HDFS and creates a different clustered

index per block replica. HAIL uses the efficient binary PAX

representation [25] to store blocks and keeps each physical

block replica in a different sort order. Sorting and indexing

happen in-memory at upload time. If index information is

available, HAIL also uses a modified version of the task

scheduling algorithm of Hadoop, in order to schedule tasks

to nodes with appropriate indexes and sort orders. The block

binary representation and in-memory creation of indexes

improves upload times for HDFS, while query execution

times also greatly improve when index information is avail-

able. HAIL preserves Hadoop’s fault-tolerance properties.

However, failover times are sometimes higher, due to HAIL

assigning more blocks per map task, therefore limiting

parallelization during recovery. In a system with the default

degree of replication, three different sort orders and indexes

are available, greatly increasing the probability of finding

a suitable index for the corresponding filtering attribute

of the query. HAIL benefits queries with low selectivity,

exploratory analysis of data and applications for which there

exists adequate information for index creation.

Work Sharing: MRShare [17] is a Hadoop extension

that aims to exploit sharing opportunities among different

jobs. It transforms a batch of queries into a new batch, by

forming an optimization problem and providing the opti-

mal grouping of queries to maximize sharing opportunities.

MRShare works on the following levels: sharing scans when

the input to mapping pipelines is the same and sharing map

outputs when the reducers will have to push each tuple to

the correct reduce function. Hadoop was modified to support

tagging of tuples and merge the tags into the keys of tuples,

so that their origin jobs can be identified. Moreover, reducers

were enabled to write to more than one output files.

Data Reuse: ReStore [16] is an extension to Pig [19],

a high-level system built on top of Hadoop/MapReduce. It

stores and reuses intermediate results of scripts, originating

from complete jobs or sub-jobs. The input of ReStore is Pig’s

physical plan, i.e. a workflow of MapReduce jobs. ReStore

maintains a repository where it stores job outputs together

with the physical execution plan, the filename of the output

in HDFS and runtime statistics about the MapReduce job

that produced the output. The system consists of a plan

matcher and rewriter which searches in the repository for

possible matches and rewrites the job workflow to exploit

stored data. It also has a sub-job enumerator and a sub-job

selector, which are responsible for choosing which sub-job

outputs to store, after a job workflow has been executed.

Sub-job results are chosen to be stored in the repository

based on the input to output ratio and the complexity of their

operators. Repository garbage collection is not implemented,

however guidelines for building one are proposed.

Skew Mitigation: SkewTune [18] is a transparent

Hadoop extension providing mechanisms to detect stragglers

and mitigate skew by repartitioning their remaining unpro-

cessed input data. In order to decide when a task should be

treated as a straggler, while avoiding unnecessary overhead

and false-positives, SkewTune is using Late Skew Detection.

Depending on the size of the remaining data, SkewTune may

decide to scan the data locally or in parallel. In Hadoop,

skew mitigation is implemented by SkewTune as a separate

MapReduce job for each parallel data scan and for each

mitigation. When repartitioning a map task, a map-only job

is executed and the job tracker broadcasts all information

about the mitigated map to all the reducers in the system.

When repartitioning a reduce task, due to the MapReduce

static pipeline inflexibility, an identity map phase needs to

be run before the actual additional reduce task.

Data Colocation: The last system we present in this

category is CoHadoop [15] and it allows applications to

control where data are stored. In order to exploit its ca-

pabilities, applications need to state which files are related

and might need to be processed together. CoHadoop uses

this information to collocate files and improve job runtimes.

While HDFS uses a random placement policy for load-

balancing reasons, CoHadoop allows applications to set a

new file property, in order for all copies of related files to

be stored together. This property, the locator, is an integer

and there is a N:1 relationship between files and locators, so

that files with the same locator are stored on the same set of

datanodes. The mapping is managed by saving information

in a locator table, in the Namenode’s memory. If the selected

set of datanodes runs out of space, CoHadoop simply stores

the files in another set of datanodes. CoHadoop may lead to

skew in data distribution and also loss of more data in the
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presence of failures. Collocation and special partitioning are

performed by adding a preprocessing step to a MapReduce

job, which itself is a MapReduce job.

B. Programming model extensions

1) High-Level Languages: Developing applications using

high-level languages on top of Hadoop has proven to be

much more efficient regarding development time than using

native MapReduce. Maintenance costs and bugs are also

greatly reduced, as much less code is required. Pig [19]

is one such high-level system that consists of a declarative

scripting language, Pig Latin, and an execution engine that

allows the parallel execution of data-flows on top of Hadoop.

Pig offers an abstraction that hides the complexity of the

MapReduce programming model and allow users to write

SQL-like scripts, providing all common data operations

(filtering, join, ordering, etc.).

One of the most widely-used high-level systems for

Hadoop is Hive [20]. Initially developed by Facebook, Hive

is not just an abstraction, but a data warehousing solution. It

provides a way to store, summarize and query large amounts

of data. Hive’s high-level language, HiveQL, allows users

to express queries in a declarative, SQL-like manner. Very

similar to Pig, HiveQL scripts are compiled to MapReduce

jobs and executed on the Hadoop execution engine.

Another popular query language is Jaql [26]. Jaql is less

general than the systems we have introduced in this Section,

as it is designed for quering semi-structured data in JSON

format only. The system is extensible and supports paral-

lelism using Hadoop. Although Jaql has been specifically

designed for data in JSON format, it borrows a lot of

characteristics from SQL, XQuery, LISP, and PigLatin.

Cascading [27] is a Java application framework that

facilitates the development of data processing applications

on Hadoop. It offers a Java API for defining and testing

complex dataflows. It abstracts the concepts of map and

reduce and introduces the concept of flows, where a flow

consists of a data source, reusable pipes that perform oper-

ations on the data and data sinks. Cascading quickly gained

popularity among the industry and Twitter even developed

and open-sourced a Scala API for it, Scalding [28].

2) Domain-specific Systems:

Support for Iterations: Iterative algorithms are very

common in data-intensive problems, especially in the do-

mains of machine learning and graph processing. HaLoop

[29], is a modified version of Hadoop, with built-in sup-

port for development and efficient execution of iterative

applications. HaLoop offers a mechanism to cache and in-

dex invariant data between iterations, significantly reducing

communication costs. It extends Hadoop’s API, allowing the

user to define loops and termination conditions easily. The

authors also propose a novel scheduling algorithm, which

is loop-aware and exploits inter-iteration locality. It exploits

cached data in order to co-locate tasks which access the

same data in different iterations.

Support for Incremental Computations: A special class

of iterative applications is that of incremental computations.

These include jobs which need to be run repeatedly with

slightly different, most often augmented input. Performing

such computations in MapReduce would obviously lead

to redundant computations and inefficiencies. In order to

overcome this problem, one has to specially design their

MapReduce application to store and use state across mul-

tiple runs. Since MapReduce was not designed to reuse

intermediate results, writing such programs is complex and

error-prone. Incoop’s [30] goal is to provide a transparent

way to reuse results of prior computations, without demand-

ing any extra effort from the programmer. Incoop extends

Hadoop to support incremental computations, by making

three important modifications: (a) Inc-HDFS. A modified

HDFS which splits data depending on file contents instead of

size. It provides mechanisms to identify similarities between

datasets and opportunities for data reuse, while preserving

compatibility with HDFS. (b) Contraction Phase. An addi-

tional computation phase added before the Reduce phase,

used to control task granularity. This phase leverages the idea

of Combiners to ”break” the reduce task into a tree-hierarchy

of smaller tasks. The process is run recursively until the last

level, where the reduce function is applied. In order to result

into a data partitioning suitable for reuse, content-based

partitioning is again performed on every level of Combiners.

(c) Memoization-aware Scheduler. An improved scheduler

which takes into account data locality of previously com-

puted results, while also using a work-stealing algorithm.

The memoization-aware scheduler schedules tasks on the

nodes that contain data which can be reused. However, this

approach might create load imbalance if some data is very

popular. To avoid this situation, the scheduler implements

a simple work-stealing algorithm. When a node runs out of

work, the scheduler will locate the node with the largest task

queue and delegate a task to the idle node.

C. Automatic tuning

Self-Tuning: Configuring and tuning Hadoop MapRe-

duce is usually not a trivial task for developers and adminis-

trators, often resulting to poor performance, resource under-

utilization and consequently increased operational costs.

Starfish [21] is a self-tuning system, built as an extension

to Hadoop, which dynamically configures system prop-

erties based on workload characteristics and user input.

Starfish performs tuning on three levels. In the job-level, it

uses a Just-in-Time Optimizer to choose efficient execution

techniques, a Profiler to learn performance models and

build job profiles and a Sampler to collect statistics about

input, intermediate and output data and help the Profiler

build approximate models. In the workflow-level, it uses

a Workflow-aware Scheduler, which exploits data locality

1035



on the workflow-level, instead of making locally optimal

decisions. A What-if Engine answers questions based on

simulations of job executions. In the workload-level, Starfish

consults the Workload Optimizer to find opportunities for

data-flow sharing, materialize of intermediate results for

reuse or reorganize jobs inside a batch and the Elastisizer

to automate node and network configuration.

Disk I/O Minimization: Sailfish [31] is another Hadoop

modification also providing auto-tuning opportunities, such

as dynamically setting the number of reducers and han-

dling skew of intermediate data. Additionally, it improves

performance by reducing disk I/O due to intermediate data

transfers. The proposed solution uses KFS [32] instead of

HDFS, which is a distributed file system allowing concurrent

modifications to multiple blocks of a single file. The authors

propose I-files, an abstraction which aggregates intermediate

data, so that they can be written to disk in batches. An

index is built and stored with every file chunk and an offline

daemon is responsible for sorting records within a chunk.

Data-aware Optimizations: Manimal [33] is an auto-

matic optimization framework for MapReduce, transparent

to the programmer. The idea is to apply well-known query

optimization techniques to MapReduce jobs. Manimal de-

tects optimization opportunities by performing static analysis

of compiled code and only applies optimizations which are

safe. The system’s analyzer examines the user code and

sends the resulting optimization descriptors to the optimizer.

The optimizer uses this information and pre-computed in-

dexes to choose an optimized execution plan, the execution

descriptor. The execution fabric then executes the new plan

in the standard map-shuffle-reduce fashion. Optionally, an

index generation program creates an additional MapReduce

job to generate an indexed version of the input data. Example

optimizations performed by Manimal include Selection and

Projection. In the first case, when the map function is a filter,

Manimal uses a B+Tree to only scan the relevant portion of

the input. In the second case, it eliminates unnecessary fields

from the input records.

Table I shows a brief comparison of the systems discussed

in this survey. We have excluded high-level languages from

this comparison, since they share common goals and major

characteristics among them.

V. DISCUSSION

MapReduce is a quite recent paradigm and its open-source

implementation, Hadoop, still has plenty of optimization

opportunities to exploit. However, implementing even tra-

ditional optimization techniques can be very challenging

in architectures of shared-nothing clusters of commodity

machines. Scalability, efficiency and fault-tolerance are ma-

jor requirements for any MapReduce framework and trade-

offs between optimizations and these features need to be

carefully studied.

One can identify several trends when studying the systems

discussed in this survey. In contrast to traditional applica-

tions, MapReduce programs are data-intensive instead of

computation-intensive and, in order to achieve good perfor-

mance, it is vital to minimize disk I/O and communication.

Therefore, many systems seek ways to enable in-memory

processing and avoid reading from disk when possible. For

the same reason, traditional database techniques, such as

materialization of intermediate results, caching and indexing

are also favored.

Another recurring theme in MapReduce systems is relax-

ation of fault-tolerance guarantees. The initial MapReduce

design from Google assumed deployments in clusters of

hundreds or even thousands of commodity machines. In

such setups, failures are very common and strict fault-

tolerance and recovery mechanisms are necessary. However,

after the release of Hadoop, MapReduce has also been

used by organizations much smaller than Google. Common

deployments may consist of only tenths of machines [34],

significantly decreasing failure rates. Such deployments can

benefit from higher performance, by relaxing the fault-

tolerance guarantees of the system. For example, one can

avoid materialization of task results and allow pipelining

of data. In this scenario, when a failure occurs, the whole

job would have to be re-executed, instead of only the tasks

running on the failed node.

Many important steps forward have been made since

the launch of MapReduce and Hadoop, but several open

issues still exist in the area. Even though it is clear that

relaxing fault-tolerance offers performance gains, we believe

that this issue needs to be further studied in the context

of MapReduce. The trade-offs between fault-tolerance and

performance need to be quantified. When these trade-offs

have become clear, Hadoop could offer capabilities of tun-

able fault-tolerance to the users or provide automatic fault-

tolerance adjustment mechanisms, depending on cluster and

application characteristics.

Another open issue is clearly the lack of a standard

benchmark or a set of typical workloads for comparing the

different Hadoop implementations. Each system is evaluated

using different datasets, deployments and set of applications.

There have been some efforts in this direction [31], [35],

but no complete solution has been introduced and no clear

answer exists to what a ”typical” MapReduce workload

would be.

As far as programming extensions are concerned, we

believe that the main problem with all the specialized

systems proposed is transparency to the developer. In our

view, such programming extensions need to be smoothly

integrated into to the framework, so that existing applications

can benefit from the optimizations, automatically, without

having to change or re-compile the source code.

Finally, even if successful declarative-style abstractions

exist, Hadoop MapReduce is still far from offering inter-
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Optimization Type Major Contributions Open-Source /
Available to use

Transparent to Existing
Applications

MapReduce
Online

performance,
programming model

Pipelining, Online aggregation yes yes

EARL performance Fast approximate query results yes no

Hadoop++ performance Performance gains for relational operations no yes

HAIL performance Performance gains for relational operations no no

MRShare performance Concurrent work sharing no no

ReStore Reuse of previously computed results no yes

SkewTune performance Automatic skew mitigation no yes

CoHadoop performance Communication minimization by data co-
locations

no no

HaLoop programming model Iteration support yes no

Incoop programming model Incremental processing support no no

Starfish tuning, performance Dynamic self-tuning no yes

Sailfish tuning, performance Disk I/O minimization and automatic tuning no yes

Manimal tuning, performance Automatic data-aware optimizations no yes

Table I
COMPARATIVE TABLE OF HADOOP VARIATIONS

active analysis capabilities. Developing common analysis

tasks and declarative queries has indeed been significantly

facilitated. However, these high-level systems still compile

their queries into MapReduce jobs, which are executed

on top of Hadoop. According to our judgment, these sys-

tems could greatly benefit from more sophisticated query

optimization techniques. Mechanisms such as data reuse

and approximate answers should also be more extensively

studied and exploited in high-level systems.

Unfortunately, the majority of the proposed systems are

not open-source or even available to use. This prevents

researchers from studying or extending them and stalls

progress. Also, proposed systems usually only compare

to vanilla Hadoop, not yielding very interesting results.

Consequently, very few of the optimizations proposed have

been incorporated to official Hadoop releases.

VI. CONCLUSIONS

In conclusion, Big Data systems and specifically MapRe-

duce, are an active research area, still at its infancy. Cur-

rently, the interest for MapReduce is at its peak and there

exist a lot of problems and challenges to be addressed.

There lies a bright future ahead for Big Data, as businesses

and organizations realize more and more the value of the

information they can store and analyze. Developing ways to

process the vast amounts of data available drives business in-

novation, health discoveries, science progress and allows us

to find novel ways to solve problems, which we considered

very hard or even impossible in the past.

ACKNOWLEDGMENT

This work was supported in part by the Erasmus Mundus

Joint Doctorate in Distributed Computing (EMJD-DC)

funded by the Education, Audiovisual and Culture Executive

Agency (EACEA) of the European Commission under the

FPA 2012-0030, and in part by the End-to-End Clouds

project funded by the Swedish Foundation for Strategic

Research (SSF) under the contract RIT10-0043.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[2] “Hadoop: Open-Source implementation of MapReduce,”
http://hadoop.apache.org, [Online; Last accessed Jan 2013].

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), ser. MSST ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1–10.

[4] “MapReduce: A Major Step Backwards,”
http://homes.cs.washington.edu/billhowe/mapreduce a major
step backwards.html, [Online; Last accessed Jan 2013].

[5] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker, “A comparison of approaches
to large-scale data analysis,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data,
ser. SIGMOD ’09. New York, NY, USA: ACM, 2009, pp.
165–178.

[6] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon,
“Parallel data processing with mapreduce: a survey,” SIG-
MOD Rec., vol. 40, no. 4, pp. 11–20, Jan. 2012.

[7] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of
mapreduce: an in-depth study,” Proc. VLDB Endow., vol. 3,
no. 1-2, pp. 472–483, Sep. 2010.

[8] A. Goyal and S. Dadizadeh, “A survey on cloud computing,”
University of British Columbia, Tech. Rep., 2009.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, ser. Eu-
roSys ’07. ACM, 2007, pp. 59–72.

1037



[10] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: cluster computing with working sets,” in
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10.
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