
Dealing with Bootstrapping, Maintenance, and Network Partitions and Mergers in
Structured Overlay Networks

Tallat M. Shafaat

KTH - Royal Institute of Technology
tallat@kth.se

Ali Ghodsi

University of California, Berkeley
alig@cs.berkeley.edu

Seif Haridi

Swedish Institute of Computer Science
seif@sics.se

Abstract—In the last decade, numerous structured overlay
networks were proposed as a scalable infrastructure to build
large-scale distributed systems under dynamic environments.
These overlays were touted to be fault-tolerant and self-
managing; yet, as we show in this paper, they fall short of
handling some extreme scenarios they envision. These scenarios
include bootstrapping, and underlying network partitions and
mergers. We argue that handling such extreme scenarios is
fundamental to providing a fault-tolerant and self-managing
system, and thus, structured overlay networks should intrinsi-
cally be able to handle them.

In this paper, we present ReCircle, an overlay algorithm
that apart from performing periodic maintenance to handle
churn like any other overlay, can merge multiple structured
overlay networks. We show how such an algorithm can be used
for decentralized bootstrapping. ReCircle does not have any
extra cost during normal maintenance compared to an isolated
overlay maintenance algorithm. Furthermore, the algorithm
is tunable to tradeoff between bandwidth consumption and
time to convergence during extreme events like bootstrapping
and handling network partitions and mergers. We evaluate
the algorithm extensively under various scenarios through
simulation and experimentation on PlanetLab.

I. INTRODUCTION

The past decade marked the rise of peer-to-peer systems

that could utilize resources available at the edge of the

network. This has lead researchers to develop numerous

protocols, called structured overlay networks, that provide

an abstraction of a lookup service over a large number of

distributed nodes (e.g. [26], [10], [15]). Such overlays were

touted for being fault-tolerant and self-managing, and their

ability to handle decentralized and dynamic environments,

e.g. peer-to-peer systems on the Internet. As it turns out,

structured overlay networks fall short of handling some ex-

treme conditions they envisioned. These extreme conditions

include network partitions and mergers, bootstrapping, and

flash crowds.

Network partitions are a fact of life. Hence, any long-

lived Internet-scale system is bound to come across network

partitions. A variety of reasons can lead to such partitions.

A WAN link failure, router failure, router misconfiguration,

overloaded routers, congestion due to denial of service

attacks, buggy software updates, and physical damage to

network equipment can all result in network partitions [21],

[6], [22], [3]. Apart from software and hardware failures,

political and service provider policies can also result in

network partitions. For instance, the disputation between two

ISPs, Cogent and Telia, lead to network breakage for a large

number of customers across the Atlantic for two weeks [2].

Similarly, due to government policies, the Internet was cut-

off in Egypt for more than 24 hours resulting in the network

of the whole country being partitioned away [1]. Since the

vision of structured overlay networks is to provide fault-

tolerance and self-management at large-scale, we believe

that structured overlay networks should intrinsically be able

to deal with network partitions and mergers. With the

exception of SkipNet [10], overlays have generally ignored

the problem of network partitions and mergers; and the

approach taken by SkipNet to merge multiple overlays is

not applicable to other overlays (see Section V). On the

same lines, while deploying an application built on top of

a structured overlay, the first major problem reported and

strongly suggested to be solved by Mislov et al. [19] was

that “a reliable decentralized system must tolerate network

partitions.”

Efficient bootstrapping - creating a populated structured

overlay network from scratch - is yet another challenge that

overlays failed to address. Overlays are limited in the rate

at which new nodes can join the overlay [16], hence the

time duration needed to create an overlay of a large size

may be long. This approach has two drawbacks. First, the

system users may have to wait for a long duration, depending

on the size of the overlay, before they can use the overlay.

This is undesirable for example when resources are allocated

for limited duration of time, or when an overlay has to be

created in an ad hoc or temporary setting. Second, limiting

the rate of joins may be complicated or require central

coordination, which defies the ideology of structured overlay

networks as they are decentralized peer-to-peer systems.

Hence, given the goal of structured overlays to be self-

managing and self-organizing, we believe that they should

be able to bootstrap efficiently without constraints on the

size of the overlay or the rate of joins.

We strongly believe that if structured overlay networks

are to realize their goal of being scalable, fault-tolerant, self-

managing and self-organizing, they should inherently be able

2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems

978-0-7695-4851-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SASO.2012.36

149

to bootstrap efficiently, and handle network partitions and

mergers other than only being able to deal with moderate

rates of churn.

In this paper, we present an overlay algorithm, called

ReCircle, that is capable of (i) bootstrapping an overlay,

(ii) maintaining the overlay under churn, and (iii) handling

underlying network partitions and mergers. The algorithm

builds and maintains a structured overlay with a uni-

directional ring geometry, yet the underlying concepts can be

extended to other geometries as well. The algorithm allows a

system designer to tradeoff between bandwidth consumption

and time taken for bootstrapping and merging overlays.

We show this tradeoff and examine the solution through

simulation and experimental evaluation on PlanetLab for

various scenarios and parameter values. Furthermore, during

normal operation, i.e. after bootstrapping and without under-

lying network partitions and mergers, the algorithm behaves

similar to a general overlay maintenance algorithm without

any overhead.

Outline: We begin by presenting a background in

Section II. We present our solution in Section III. Next,

Section IV presents a detailed evaluation of the algorithm

with simulations and experiments on PlanetLab. Finally,

we discuss related work in Section V and conclude in

Section VI.

II. BACKGROUND

In this paper, we confine ourselves to ring-based struc-

tured overlay networks, as they constitute the majority of

structured overlays, e.g. Chord [26], SkipNet [10], and Ac-

cordion [15]. For simplicity, we use notations from Chord,

though the ideas presented in the paper are applicable to

other ring-based overlays as well.

Model of a ring overlay: An overlay makes use of an

identifier space, which for our purposes is defined as a set of

integers {0, 1, · · · ,N − 1}, where N is some apriori fixed,

large, and globally known integer. This identifier space is

perceived as a ring that wraps around at N − 1.

Every node in the system has a unique identifier from

the identifier space. Each node keeps a pointer, succ, to its

successor on the ring. The successor of a node with identifier

p is the first node found going in clockwise direction on the

ring starting at p. Similarly, every node also has a pointer,

pred, to its predecessor on the ring, which is the first

node met going anti-clockwise direction. A successor-list
is also maintained at every node r, which consists of r’s c
immediate successors, where c is typically set to log2(n),
where n is the network size.

Ring-based overlays also maintain additional routing

pointers on top of the ring to enhance routing. Our results

do not depend on how these additional pointers are placed.

Periodic maintenance: Chord handles joins and failures

using a protocol called periodic stabilization (PS). Failures

are handled by having each node periodically check whether

pred is alive, and setting pred := nil if it is found dead.

Moreover, each node periodically checks to see if succ is

alive. If it is found to be dead, it is replaced by the closest

alive successor in the successor-list.

Joins are also handled periodically. A joining node makes

a lookup to find its successor s on the ring, and sets

succ := s. Each node periodically asks for its successor’s

pred pointer, and updates succ if it finds a closer successor.

Thereafter, the node notifies its current succ about its own

existence, such that the successor can update its pred pointer

if it finds that the notifying node is a closer predecessor than

pred, or if the successor’s pred is nil. Hence, any joining

node is eventually properly incorporated into the ring.

III. SOLUTION

Bootstrapping, network partitions and mergers, and flash

crowds represent extreme rates of churn. Bootstrapping and

overlay mergers are similar to a large number of nodes join-

ing the overlay simultaneously, where as network partitions

are akin of massive failures. Flash crowds can be either huge

number of nodes joining or leaving the overlay. Periodic

stabilization (PS) can handle massive failures [17] as long as

no node looses all its successor-list. Hence, if no node has its

successor-list partitioned away, PS can handle network par-

titions, making each component of the partition eventually

form its own ring. Furthermore, overlays cannot intrinsically

bootstrap efficiently, handle flash crowds of joins [17], or

deal with overlay mergers. To handle all these cases, we

propose ReCircle, an overlay maintenance algorithm that

runs periodically for normal overlay maintenance, and reacts

to extreme events and starts sending messages other than

the periodic messages. Periodic messages are exchanged

between a node, its successor and predecessor to maintain

the geometry in the node’s immediate vicinity only, while the

reactive messages can navigate further in the identifier space.

These messages remedy the anomalies in the geometry and

the overlay converges to a ring. Once the overlay converges,

the reactive messages die out and the algorithm returns to

act as a normal periodic maintenance algorithm.

Our methodology is different from overlay maintenance

algorithms such as Chord’s periodic stabilization in two

aspects. First, ReCircle is reactive to extreme events, while

Chord is always periodic. Being reactive is desirable for

extreme events since such events invalidate several pointers

simultaneously. Second, in Chord, a node periodically at-

tempts to fix any possible anomalies in the geometry only

with its immediate successor. On the other hand, as extreme

events may quickly make the immediate neighbourhood of

a node on the ring outdated, ReCircle is able to traverse

farther away, using an operation similar to a lookup.

The solution is given as Algorithm 1. Periodically, every

δ time units (line 1), each node n attempts to set its succ to

a node clockwise closer to n than n’s current successor. n

150

accomplishes this by retrieving its successor’s pred pointer,

and updates succ if it finds a closer successor.

Each node maintains a queue, which contains a list of

node identifiers that represent possible (problematic) areas

on the identifier space that violate the geometry of the

overlay and can be fixed. These areas can arise, for example,

due to churn, bootstrapping, and flash crowds. If the queue

is nonempty at any node, it implies that the overlay may

not be in a converged state. Later in this section, we discuss

all cases in which node identifiers should be added to the

queue.

ReCircle uses a method called MLOOKUP(id) for fixing

a possible problematic area id on the identifier space.

MLOOKUP(id) does the following. First, it performs a

greedy routing, similar to a Chord lookup, to the problem

area defined by the identifier id. Once it routes to id, it fixes

the geometry there by triggering the same afore-mentioned

mechanism that is periodically carried out every δ time units.

The MLOOKUP then continues to fix the ring in the clock-

wise direction (Figure 2). Second, an MLOOKUP spreads the

fixing process by generating new MLOOKUPs for random

identifiers on the ring; hence triggering the fixing mechanism

at random places on the identifier. This is accomplished by

enqueuing id into random nodes from the nodes routing

table (lines 23–24). This is shown in Figure 1. Third, as an

optimization, an MLOOKUP attempts to optimistically fix

any wrong successor and predecessor pointers while routing

by calling the UPDATE method (line 30).

Periodically, after every γ time units (line 14), each

node tries to fix the geometry of the overlay by gener-

ating MLOOKUPs to identifiers in its queue. Furthermore,

whenever p makes an MLOOKUP(q), then q also makes an

MLOOKUP(p).

ReCircle provides knobs to tradeoff bandwidth consump-

tion and the time taken to converge to a ring geometry.

This tradeoff can be achieved by controlling the amount

and rate of spreading the fixing procedure. The number of

times the fixing procedure is spread is equivalent to the

number of new MLOOKUPs generated. As mentioned earlier,

new MLOOKUPs are generated while routing an MLOOKUP

(lines 23–24). Here, we employ a fanout parameter f that

controls how many new MLOOKUPs are generated (line 21).

Higher values of the fanout will result in more concurrent

MLOOKUPs, hence consuming more bandwidth but converg-

ing in lesser time. Similarly, the rate of spreading the fixing

procedure is equivalent to the rate at which MLOOKUPs are

started. Since new MLOOKUPs are started periodically by

dequeuing, this rate can be controlled via the time period

γ, and the number of MLOOKUPs generated in each period,

denoted as MLKUPS PER PERIOD (line 15).

A. Merging multiple overlays

The merger of multiple overlays might be required in

two cases. First, an existing overlay can split into multiple

��

�����	
������������

����������������

���

��

��

��

��

Figure 1. White nodes belong to an overlay O1, while black nodes
belong to another overlay, O2. The merger starts when 15 is added to
the queue of 90. (1a) 90 makes an MLOOKUP(15) to fix the ring geometry
around identifier 15, and also asks 15 (1b) to make an MLOOKUP for
90, which will result in fixing the ring around 90 (2a). While routing the
MLOOKUP(15), 99 shares the merger information with a random node, 50,
from its routing table (2b). This will eventually result in an MLOOKUP(50)
from 15 that will fix the ring around 50 (not shown in figure). Details of
MLOOKUP(15) ending at 10, denoted as [+], are shown in Figure 2.

overlays due to an underlying network partition. When the

network partition ceases, the overlays should merge back

into a single overlay. Second, it could happen that multiple

overlays are created independently of each other, and later,

their administrators decide to merge them due to overlapping

interests or change in policy.

Passive lists [24], maintained by each node, can be used to

detect underlying network partitions and mergers. Whenever

a node detects another node n as failed, it adds n to its

passive list. Hence, a network partition will result in nodes

from one partition being added to passive lists of nodes in

the other partition. Each node periodically pings nodes in its

passive list to check if a failed node is alive again. When

this occurs, it implies that an earlier network partition has

ceased and the underlying network has merged. At this point,

the overlay merger process can be started. If the network

stays partitioned for a long duration, passive lists can become

obsolete. In such cases, an administrator has to trigger the

overlay merger mechanism when the underlying network

merges.

Two independent overlays can be merged into a single

overlay using Algorithm 1. The merger can be triggered

via connecting the overlays by adding the identifier of any

node from one overlay to the queue of any node from the

other overlay1 either by the passive lists mechanism, or

an administrator. An MLOOKUP will be generated for the

node in the queue. As noted earlier, an MLOOKUP(m) first

routes to the problematic area m, terminating at a node n
such that m ∈ [n, n.succ]. Then, the geometry is fixed by

setting n.succ := m, and the two overlays are merged on

1The higher the number of connections between the two overlays, the
faster the overlay will converge.

151

Algorithm 1 ReCircle

1: every δ time units at p
2: sendto succ : GETPRED(succ)
3: end event

4: receipt of GETPRED(psucc) from m at n
5: sendto m : GETPREDRES(pred, sl)
6: if psucc �= n then
7: queue.enqueue(〈psucc, f〉)
8: UPDATE(m)
9: end event

10: receipt of GETPREDRES(succp, succsl) from m at n
11: UPDATE(succp)
12: UPDATESUCCESSORLIST(succsl)
13: end event

14: every γ time units and queue �= ∅ at p
15: for i← 1:MLKUPS PER PERIOD and queue �= ∅ do
16: 〈q, F 〉 := queue.dequeue()
17: sendto p : MLOOKUP(q, F)
18: sendto q : MLOOKUP(p, F)

19: end event

20: receipt of MLOOKUP(id, F) from m at n
21: if F > 1 then
22: F := F − 1
23: r := randomnodeinRT()
24: at r : queue.enqueue(〈id, F 〉)
25: if id �= n and id �= succ then
26: if id ∈ (n, succ) then
27: sendto id : GETPRED(succ)
28: else
29: sendto closestpreceding(id) : MLOOKUP(id, F)

30: UPDATE(id)
31: end procedure

32: procedure UPDATE(candidate) at n
33: if candidate ∈ (n, succ) then
34: succ := candidate
35: else if pred = nil or candidate ∈ (pred, n) then
36: pred := candidate

37: end procedure

the identifier space around identifier m. The merger process

is continued by issuing new MLOOKUPs. Consider Figure 2,

where n = 10 and m = 15. An MLOOKUP, to propagate

the merger, is needed between 10 and 10.succ = 30 because

a merger between overlays O1 and O2 can result in several

nodes from O2 to be placed between a node 10 in O1
and 10’s successor. 10 accomplishes this propagation by

asking 15 (step 2a) to enqueue 30 (line 7) as it represents

a problematic area. Such a mechanism enables ReCircle to

continue merging the overlays clock-wise. Furthermore, as

new MLOOKUPs are generated for random identifiers while

routing an MLOOKUP, the overlays concurrently merge

clock-wise starting at random positions in the identifier

space and eventually, converge into one overlay (Fig. 1).

�������������

�������������

��

�������������

��

���� �!"#�$���

%
�

��
��

��

�� �� �� �% ��

����&�!�'�(()*������&�!�'�(()*��

���� �!"#�$���

����	
�������+���	
�������

Figure 2. White nodes belong to an overlay O1, while black nodes
belong to another overlay, O2. The figure depicts how new MLOOKUPs
are generated when an MLOOKUP(15) terminates at 10; where 10 ∈ O1
and 15 ∈ O2. Here, the new MLOOKUPs enable the algorithm to continue
merging the ring clock-wise.

Note that ideally, the new MLOOKUPs are generated such

that the source and destination nodes belong to different

overlays.

B. Bootstrapping

The ideas for merging two overlays apply to merging

more than two overlays as well; an extreme case of which

is bootstrapping where each node can be considered an

overlay in itself. Bootstrapping is achieved by creating a

structured overlay from a random connected overlay, where

each node has some random nodes as neighbours. In our

algorithm, each node can be considered an independent

structured overlay of size one by pointing to itself as its

successor and predecessor. To start bootstrapping, each node

adds its neighbours to its queue. The algorithm then triggers

the merger mechanism by generating MLOOKUPs to nodes

in the queue, resulting in a single converged overlay.

C. Termination

An important requirement for a unified algorithm is that

under normal scenarios (i.e. no churn), the maintenance

cost should be low, for instance, similar to Chord’s periodic

stabilization. To achieve this, we designed the algorithm to

be reactive such that it starts generating more messages than

the periodic maintenance mechanism to handle rare events

such as bootstrapping or network partitions and mergers.

Once such events are catered and the overlay converges, the

algorithm stops sending extra messages and the number of

messages drops to the only periodic maintenance messages.

This property is achieved by not generating new MLOOKUPs

when the possible problematic area is already fixed (lines 25

and 6). When the overlay is converged, there will not be

any problematic areas and hence, the queues on all nodes

will eventually be emptied and no new MLOOKUPs will be

started.

IV. EVALUATION

In this section, we evaluate ReCircle by both simulations

and experiments on Planetlab2. We implemented the algo-

rithm in Kompics [5] and for simulations, we used the King

latencies [9] for network delays. The focus of the evaluation

is on overlay mergers and bootstrapping as normal scenarios

2http://www.planet-lab.org

152

Parameter Values
Fanout f 1 – 5
MLOOKUPs per period m 1 – 5, ∞
Queue interval γ 1, 2 (secs)
Periodic maintenance interval δ 10, 30, 60 (secs)

Table I
RANGE OF PARAMETER VALUES USED FOR SIMULATIONS.

are handled similar to Chord. The two main metrics used are

bandwidth consumption and time taken for convergence. The

simulations were repeated with 20 different random seeds,

and we plot average and 95% confidence intervals in our

graphs.

A. Same size networks merge

We first consider the performance of the algorithm when

two overlays of same size merge. As the simulation scenario,

we created two separate overlays of the same size, and then

started the merger algorithm by creating one link between

the overlays.

Algorithm 1 uses four parameters:

• f: The fanout f used to control the spread of

MLOOKUPs (line 7).

• m: The number of MLOOKUPs generated in each period

γ, shown as MLKUPS PER PERIOD on line 15.

• γ: The interval after which MLOOKUPs are generated

to identifiers stored in the queue (line 14).

• δ: The interval after which a node performs periodic

stabilization (line 1).

To study the affect of all four parameters, we employed

a performance-vs-cost model [15] where we used ranges of

values for each parameter. The ranges for parameter values

we chose for evaluation are shown in Table I. We used higher

values of δ, compared to γ, in line with Li’s study [15] on

comparing range of values of periodic interval for mainte-

nance in various overlays. In Table I, m = ∞ means that

the MLOOKUPs are not queued but are instead generated

instantly. Each combination of the parameter values was

simulated for 20 different random number generation seeds.

For each simulation, the combination of parameters had

some cost and performance associated with it. For our work,

the cost of the algorithm is the bandwidth used per peer

during the merge process, and the performance is the time
taken by the algorithm to converge the overlays into one

overlay.

Figure 3 shows the results of various combinations of the

parameters for a total network size of 2048. Each dot in

the graph represents the result of a single experiment for a

parameter combination. As is evident from the figure, when

the cost is more (higher bandwidth), the performance is bet-

ter (lower time to convergence). Similarly, less cost (lower

bandwidth) results in lower performance (high convergence

time). Furthermore, there is a point after which more cost

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Bandwidth (bytes/peer/sec)

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

Experiment

Figure 3. A performance vs cost comparison when two networks, each
of size 1024, merge.

does not increase performance. Similarly, there is a limit to

the minimum cost.

Further analysis (omitted due to space constraints) of the

performance-vs-cost experiment (Fig 3) shows that δ does

not influence the results much. Similarly, increasing γ from

1 second to 2 seconds does not help much either. Hence

for the next evaluations, we use δ = 60 second and γ = 1
seconds.

Affect of Fanout (f) and MLookups per period (m): Next,

we discuss the affect of f and m on the cost and performance

of the algorithm. Figure 4 shows the convergence time, while

Figure 5 shows the bandwidth consumption, for different

values of f and m. For f = 1, the convergence time is

high, yet ReCircle consumes minimum bandwidth. This is

an expected behaviour as concurrent MLOOKUPs are not

generated when f = 1 at line 23 and the merge process

continues linearly. Similarly, as we increase the value of

f , the convergence time drops slower, while the bandwidth

increases exponentially. This trend applies to all simulated

values of m, which implies that after a certain value of

f , increasing f will only increase cost without significant

improvement in performance.

Figure 6 and 7 plot the performance and cost respectively

for various values of m. The bandwidth consumption in-

creases logarithmically with m, while time to convergence

drops slowly.

An important aspect of the algorithm is that in case there

is no churn, ReCircle only sends the periodic maintenance

messages. As soon as a rare event that results in churn

occurs, such as merger of multiple overlays, the algorithm

reacts to it by consuming more bandwidth. Once the overlay

converges, the overhead messages die out and the bandwidth

consumption drops back. This is shown in Figure 8, where

two overlays are merged after 10 seconds. The Y-axis

denotes the bandwidth consumed per peer in every 200

milliseconds. As evident from the figure, bandwidth con-

sumption increases to merge the overlays. Once the overlays

converge into a single overlay, the bandwidth consumption

reduces to the level of before the merger.

153

1 2 3 4 5
1

10

100

1000

Fanout, f

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

m=∞
m=1
m=2
m=3
m=4
m=5

Figure 4. Convergence time for various values
of f , where n = 2048, delta = 60 secs, and
γ = 1 sec.

1 2 3 4 5
0

20

40

60

80

100

Fanout, f

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

m=∞
m=1
m=2
m=3
m=4
m=5

Figure 5. Bandwidth consumption for various
values of f , where n = 2048, delta = 60
secs, and γ = 1 sec.

1 2 3 4 5 \infty
1

10

100

1000

MLookups per interval, m

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

f=1
f=2
f=3
f=4
f=5

Figure 6. Convergence time for various values
of m.

1 2 3 4 5 \infty
0

20

40

60

80

100

MLookups per interval, m

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
) f=1

f=2
f=3
f=4
f=5

Figure 7. Bandwidth consumption for various
values of m.

0 10 20 30 40
10

15

20

25

30

35

40

Time (secs)

B
an

dw
id

th
/p

ee
r

fo
r

20
0

m
s

bi
ns

Merger initiated

Figure 8. Bandwidth consumption for 200
milliseconds bins, showing termination of re-
active messages after convergence.

1 2 3 4 5 \infty
0.95

1

1.05

1.1

1.15

1.2

1.25

Mlookups per interval, m

of

 in
co

rr
ec

t s
uc

ce
ss

or
s/

se
t s

uc
ce

ss
or

s

Experiment

f = 1

Figure 9. Ratio, during the merger process,
of the number of times successor is set versus
the number of incorrect successors when the
merger started.

B. Set successor calls during merger

Distributed applications build on top of a structured

overlay network assign responsibilities to participating nodes

based on the region of the identifier space between a

node, and its successor and predecessor in the overlay. A

change in the successor or predecessor pointers of a node

n re-assigns responsibilities between nodes in n’s vicinity,

which requires action on behalf of the application. For

instance, in Distributed Hashtables (DHTs) built on overlays

e.g. Cassandra, a node is responsible for storing all data

items with keys between its identifier and its immediate

neighbour’s identifiers. Here, whenever a successor pointer

changes, responsibilities are re-defined and data has to be

transferred from one node to another. Hence, it is desirable

to have a minimum number of unnecessary calls to set the

successor of a node, for instance, during merging multiple

overlays to avoid unneeded data transfers. In this experiment,

we merged two overlays and measured the number of set

successor calls, s, and compared it to the number of incorrect

successors w at the point the overlays started to merge.

Ideally, s should be equal to w, but is difficult to achieve

due of decentralization. Figure 9 shows the ratio s
w for

a range of values of f (1–5) and m (1–5, and ∞). The

graph shows that f = 1 has the minimum ratio, and hence

would result in minimum data transfer. This shows that if

an overlay stores huge data items under keys, the overall

time (time for correcting routing pointers and moving data

items to new responsible nodes) for f = 1 might be lesser

than for larger values of f . In the light of this experiment,

when higher values of f are used, instead of immediately

transferring data when the responsibility of a node changes,

a periodic or delayed data exchange mechanism should be

used to transfer data among nodes. Using such a technique

will avoid transferring data unnecessarily when the merger

is under progress.

C. Various network size

Next, we studied the effect of f on the algorithm for

different network sizes, while using m =∞. Figure 10 and

11 show the convergence time and bandwidth consumption

for various network sizes, depicting that the trend remains

the same. Furthermore, for the same value of f , bandwidth

consumption per peer is lower, and convergence time higher,

for large network sizes compared to smaller sizes. This owes

to the fact that information in gossip algorithms spreads

logarithmically to the system size. Since f is used to

limit the depth of the gossip, the same value of f spreads

information at a lower rate in a large network compared to

a smaller network. Hence, for a given value of f , the cost

154

1 2 3 4 5
1

10

100

1000

Fanout

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

256
512
1024
2048
4096
8192

Figure 10. Convergence time for various
network sizes, where m = ∞, t = 60 secs,
and r = 1 sec.

1 2 3 4 5
0

20

40

60

80

100

Fanout

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

256
512
1024
2048
4096
8192

Figure 11. Bandwidth consumption for var-
ious network sizes, where m = ∞, t = 60
secs, and r = 1 sec.

1/2 1/4 1/8 1/16
0

20

40

60

80

100

120

Size (ratio) of smaller overlay

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 12. Convergence time when overlays
of different size merge.

1/2 1/4 1/8 1/16
0

20

40

60

80

100

120

Size (ratio) of smaller overlay

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 13. Bandwidth consumption when
overlays of different size merge.

1 1% 5% 10% 20%
0

20

40

60

80

100

120

Links between overlays

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
s)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 14. Convergence time when multiple
links trigger the merge process.

1 1% 5% 10% 20%
0

100

200

300

400

500

600

Links between overlays

B
an

dw
id

th
 (

by
te

s/
pe

er
/s

ec
)

m=∞, f=1
m=5, f=2
m=∞, f=5

Figure 15. Bandwidth consumption when
multiple links trigger the merge process.

and performance are lower for larger networks than smaller

networks. This implies that for large networks, higher values

of f can be used.

D. Networks of different size merge

In this section, we evaluate the cost and performance

of the algorithm when overlays of different sizes merge,

which is a common scenario as network partitions are

usually of unequal sizes. We expect that the cost should

be proportional, and the performance should be inversely

proportional, to the size of the smaller network. The reason

is that at the start of the merger, when using uniformly

random identifiers, the number of wrong successor pointers

depends on the size of the smaller network. For instance, for

a total network size of 100 nodes, the cost of merging two

overlays of sizes 80 and 20 should be lesser than merging

overlays of sizes 60 and 40. In our simulations, we created

two overlays of different sizes, and then started the merger

by creating a single link between the overlays. Figure 12 and

13 show the results for a total network size of 2048. The x-

axis depicts the ratio of the smaller network out of the total

network size. We plot results for three combinations of m
and f : m = 2, f = 1 (high convergence time, low bandwidth

consumption), m = 4, f = 3 (medium convergence time

and bandwidth consumption), and m = ∞, f = 5 (low

convergence time, high bandwidth consumption). The results

confirm that when a smaller network merges into a larger

network, the algorithm consumes resources relative to the

smaller network. Hence, as the size of the smaller network

decreases, the algorithm requires lesser time for convergence

and bandwidth.

E. Multiple links start merger

Next, we evaluate a scenario where the merger between

two overlays is triggered by creating multiple links between

the two overlays instead of a single link. This can happen

when multiple nodes detect a network partition and merger.

In such a scenario, the merger will be started simultaneously

at multiple positions on the identifier space. Intuitively, for

higher number of inter-overlay links, the overlays should

converge faster while consuming higher bandwidth because

the algorithm reacts to the merger concurrently for all the

inter-overlay links. This was confirmed in our simulations,

as shown in Figures 14 and 15. The x-axis represents

the number of links created between the two overlays for

triggering the merger. The percentage on the x-axis is out of

the total network size of 2048. The figures depict that, while

multiple links can reduce the time to convergence, it results

in higher bandwidth consumption. Higher percentages of

links make f = 1 behave like f > 1 since the merger

happens concurrently at different areas on the identifier

space even for f = 1.

155

Parameter Values
Omega, ω 1 – 5
Message size 10, 20, 30, 40, 50
Gossip time period 0.2, 0.5, 1, 1.5, 2 (secs)
Storage size 2048

Table II
RANGE OF PARAMETER VALUES USED FOR T-MAN [12].

F. Bootstrapping

As discussed in Section III-B, Algorithm 1 can be used

for bootstrapping an overlay by considering each node as an

overlay of size one and connecting the nodes randomly. In

this section, we evaluate the performance of our solution for

bootstrapping an overlay of size 2048. We create a random

Erdős-Rényi graph G(n, p), where n = 2048 and p = ln(n)
n ,

and ensure that the graph is connected. The graph dictates

the layout of the initial overlay that has to be bootstrapped

in a converged structured overlay. Each node sets itself as

its successor and predecessor, and the bootstrapping process

is triggered by making each node add its neighbours to its

queue.

We compare our solution to T-Man [13], a well-known

gossip-based approach for creating arbitrary structured over-

lays from a random graph. In T-Man, the last few pointers

take time to converge [12], hence, we measure statistics until

99% of the successor pointers are converged. To perform

an extensive comparison for bootstrapping between T-Man

and our solution, and not to depend on parameter tuning,

we again employ a performance-vs-cost model. We use a

range of parameter values and repeat each experiment for

different seeds. For T-Man, we use the values specified

in Table II. The results are plotted in Figure 16, which

shows that for the same cost (bandwidth consumption), both

algorithms have similar performance in terms of convergence

time. A disadvantage of using a specialized bootstrapping

algorithm, such as T-Man, is that it requires handing off the

bootstrapped overlay to the maintenance protocol which is

non-trivial. In comparison, ReCircle does not require such

a hand off as it embeds the overlay maintenance logic as

well. We discuss such differences and benefits of using

ReCircle in detail in Section V.

G. PlanetLab

Next, we evaluated the solution for merging multiple

overlays and bootstrapping on a real environment by run-

ning experiments on PlanetLab. Due to limited number of

physical machines available on PlanetLab, we ran 5 nodes on

each machine. We used a single server to gather statistics

about how many nodes have a correct successor pointer.

Whenever a node updated its successor, it sent a message to

the statistics server with the new value of its successor. We

compute the fraction of correct successor pointers overtime

on the statistics server as it has the identifiers of all the

0 500 1000 1500 2000
0

5

10

15

Bandwidth (bytes/peer/sec)

T
im

e
(s

ec
s)

T−Man experiment
ReCircle experiment

Figure 16. A comparison with T-Man [12] for creating a ring-structured
overlay from a random Erdős-Rényi graph for a network size of 2048

0 50 100 150 200

0.5

0.6

0.7

0.8

0.9

1

Time (secs)

F
ra

ct
io

n
of

 c
or

re
ct

 s
uc

ce
ss

or
 p

oi
nt

er
s

n=500, f=1
n=500, f=3
n=500, f=5
n=1000, f=1
n=1000, f=3
n=1000, f=5

Figure 17. Evaluation on PlanetLab for merging two overlays.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (secs)

F
ra

ct
io

n
of

 c
or

re
ct

 s
uc

ce
ss

or
 p

oi
nt

er
s

n=500, f=1
n=500, f=3
n=500, f=5
n=1000, f=1
n=1000, f=3
n=1000, f=5

Figure 18. Evaluation on PlanetLab for bootstrapping an overlay.

nodes in the system and the values of each node’s current

successor.

In the first set of experiments, we evaluated the perfor-

mance of merging two equal-sized overlays. We created two

independent overlays and triggered the merger process by

creating a link between the overlays. This was done by

adding a random node from one overlay to the queue of

a random node in the other overlay. The results for network

sizes of 500 and 1000 are shown in Figure 17. Analogous

to the simulation results, the convergence rate for f = 1 is

slower compared to higher values of fanout. Furthermore,

with f = 3 and 5, most of the successor pointers converge

within 10 to 15 seconds.

Finally, we evaluated the performance of bootstrapping an

overlay on PlanetLab. We started the nodes as single node

overlays by making each node point to itself as its successor

156

and predecessor. As in the simulations, in this experiment

we created an Erdős-Rényi graph at the statistics server

using the identifiers of the nodes. Then, the statistics server

initiated the bootstrapping process by sending messages to

all nodes containing their neighbours as dictated by the

generated graph. On receiving such a message, each node

added the neighbours to their queue, which triggered the

bootstrapping mechanism. Figure 18 depicts the results for

this experiment, which shows that an overlay of size 1000
can be created within 10 to 15 seconds. Here, f does not

effect the bootstrapping performance much. In ReCircle, f
is used to control the spread of the merger information. Since

all nodes are already participating in the merger process,

f = 1 performs the same as higher values of f . Furthermore,

the number of neighbours each node has in the graph model

used is very small. Hence, higher values of f end up sending

redundant messages.

V. RELATED WORK

A variety of overlay maintenance algorithms have been

proposed over the years [26], [10], [15], and much work

has been done to show their resilience to handle churn [17],

[18]. These systems can cope with massive failures, thus

being able to cope with network partitions as long as a node

doesn’t loose all its successor-list. Yet, these systems are

not intrinsically designed for fast bootstrapping, and cannot

merge multiple overlays. In this paper, we show an overlay

algorithm that can deal with such extreme events, while

being able to perform periodic maintenance like any overlay

algorithm. We believe that the underlying principles can be

used in other overlays as well.

Bootstrapping a structured overlay is done by constructing

a geometry, such as a ring in Chord, from a randomly

connected overlay. Shaker et al. [25] have presented an

algorithm, called Ring Network (RN), for nodes in arbitrary

state to converge into a ring topology. While their algorithm

can be used for overlay maintenance as well, it cannot

converge from certain scenarios [24]. Furthermore, since

their algorithm is not reactive to extreme events, it suffers

from the same problems as other overlays where the time

for convergence when two overlays merge is huge [24].

Montressor et al. show how any topology [12], such as a

ring [20], can be created from a randomly connected overlay

using a gossip-based protocol. However, in their algorithm,

it is difficult to detect when the overlay has converged due to

decentralization, and thus it depends on heuristics to detect

termination. Hence, we believe that further investigation is

required to study how these algorithms can be synchronized

such that once the topology is built, it can be handed over

to the overlay maintenance protocol. On the other hand,

ReCircle does not require any such handover.

Recent work has identified the need for structured over-

lays to handle network partitions and mergers [8], [23], [7].

Datta et al. [8], [7] show how to merge multiple P-Grid [4]

overlays. P-Grid is a tree-based overlay, in contrast, we

focus on ring-based overlays. Shafaat et al. [23], [24] and

Kis et al. [14] present terminating algorithms for merging

multiple ring-based overlays. All of these algorithms are

triggered for performing the merger, and then terminate after

convergence, thus giving the control back to the overlay

maintenance protocols. This can lead to two problems. First,

the implications of such a terminating algorithm on the

overlay maintenance algorithm is not well studied. Coupled

with a separate bootstrapping protocol further complicates

the interaction between the algorithms. Second, a system de-

veloper has to implement and maintain separate mechanisms

to address each problem, which can lead to unnecessary

complexities.
SkipNet [10] is designed for spanning across multiple

organizations and includes mechanisms for recovery when

organizations disconnect [11]. These mechanisms rely on

the fact that nodes within an organization are places con-

tiguously on the overlay ring. In contrast, most of the

overlays place nodes uniformly at random on the identifier

space. Hence, SkipNet’s mechanisms for partitions cannot

be applied to other overlays. ReCircle does not depend on

any such requirement; hence, it can be applied to SkipNet,

as well as other ring-based overlays. Furthermore, ReCir-

cle provides efficient bootstrapping.

VI. CONCLUSION

Structured overlay networks are designed for dynamic

environments and touted to be scalable, fault-tolerant and

self-organizing. Therefore, apart from dealing with normal

churn rates, we argue that they should intrinsically be able

to handle rare but extreme events such as bootstraping,

flash crowds, and network partitions and mergers. We have

presented ReCircle, an overlay algorithm that deals with

all such cases. Under normal execution, our algorithm ex-

changes messages periodically like any other overlay mainte-

nance protocol. On the other hand, we designed ReCircle to

be reactive to extreme events so that it can converge faster

when such events occur.
We have evaluated ReCircle in detail for various scenarios

through simulations and experiments on PlanetLab. Addi-

tionally, we have illustrated how ReCircle provides tunable

knobs to tradeoff between cost (bandwidth consumption) and

performance (time to convergence) while handling extreme

scenarios.
Future work: While this paper focuses on routing-level

issues, we believe an interesting future direction will be to

study data-level issues, such as consistency and availability

while an overlay is bootstrapping or going through partitions

and mergers.

REFERENCES

[1] “Egypt’s big Internet disconnect, 2011,” Dec. 2011,
http://www.guardian.co.uk/commentisfree/2011/jan/31/egypt-
internet-uncensored-cutoff-disconnect.

157

[2] “ISP quarrel partitions Internet, 2008,” Dec. 2011,
http://www.wired.com/threatlevel/2008/03/isp-quarrel-par/.

[3] “Taiwan earthquake shakes Internet, undersea cable damage,
2006,” Dec. 2011, http://www.theregister.co.uk/2006/12/27/bo
xing day earthquake taiwan/.

[4] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt, “P-Grid: a self-
organizing structured P2P system,” SIGMOD Record, vol. 32,
no. 3, pp. 29–33, 2003.

[5] C. Arad, J. Dowling, and S. Haridi, “Developing, simulat-
ing, and deploying peer-to-peer systems using the kompics
component model,” in Proceedings of the 4th International
Conference on Communication System Software and Middle-
ware (COMSWARE 2009), Dublin, Ireland, June 2009.

[6] F. J. C. Labovitz, A. Ahuja, “Experimental Study of Internet
Stability and Wide-Area Backbone Failures,” University of
Michigan, Tech. Rep. CSE-TR-382-98, November 1998.

[7] A. Datta, “Merging Intra-Planetary Index Structures: Decen-
tralized Bootstrapping of Overlays,” in Proceedings of the
First International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2007). Boston, MA, USA: IEEE
Computer Society, July 2007, pp. 109–118.

[8] A. Datta and K. Aberer, “The Challenges of Merging Two
Similar Structured Overlays: A Tale of Two Networks,”
in Proceedings of the 1st International Workshop on Self-
Organizing Systems (IWSOS’06), ser. Lecture Notes in Com-
puter Science (LNCS), vol. 4124. Springer-Verlag, 2006, pp.
7–22.

[9] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: esti-
mating latency between arbitrary internet end hosts,” in IMW
’02: Proc. of the 2nd ACM SIGCOMM Workshop on Internet
measurment. New York, NY, USA: ACM, 2002, pp. 5–18.

[10] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wol-
man, “Skipnet: A scalable overlay network with practical
locality properties,” in Proceedings of the 4th USENIX Sym-
posium on Internet Technologies and Systems (USITS’03).
Seattle, WA, USA: USENIX, Mar. 2003.

[11] N. J. A. Harvey, M. B. Jones, M. Theimer, and A. Wolman,
“Efficient recovery from organizational disconnects in skip-
net,” in IPTPS, 2003, pp. 183–196.

[12] M. Jelasity and Ö. Babaoglu, “T-Man: Gossip-based overlay
topology management,” in Proceedings of 3rd Workshop on
Engineering Self-Organising Systems (EOSA’05), ser. Lecture
Notes in Computer Science (LNCS), vol. 3910. Springer-
Verlag, 2005, pp. 1–15.

[13] M. Jelasity, A. Montresor, and Ö. Babaoglu, “T-Man: Gossip-
based fast overlay topology construction,” Computer Net-
works, vol. 53, no. 13, pp. 2321–2339, 2009.

[14] Z. Kis and R. Szabo, “Chord-zip: a chord-ring merger algo-
rithm,” Communications Letters, IEEE, vol. 12, no. 8, pp. 605
–607, Aug. 2008.

[15] J. Li, “Routing tradeoffs in dynamic peertopeer networks,”
PhD Dissertation, MIT—Massachusetts Institute of Technol-
ogy, Massachusetts, USA, Nov. 2005.

[16] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger, “Anal-
ysis of the Evolution of Peer-to-Peer Systems,” in Proceed-
ings of the 21st Annual ACM Symposium on Principles of
Distributed Computing (PODC’02). New York, NY, USA:
ACM Press, 2002, pp. 233–242.

[17] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger, “Obser-
vations on the Dynamic Evolution of Peer-to-Peer Networks,”
in Proceedings of the 1st Intl. Workshop on Peer-to-Peer
Systems (IPTPS’02), ser. LNCS, vol. 2429. Springer-Verlag,
2002.

[18] R. Mahajan, M. Castro, and A. Rowstron, “Controlling the
Cost of Reliability in Peer-to-Peer Overlays,” in Proceed-
ings of the 2nd Intl. Workshop on Peer-to-Peer Systems
(IPTPS’03), ser. LNCS, vol. 2735. Springer-Verlag, 2003,
pp. 21–32.

[19] A. Mislove, A. Post, A. Haeberlen, and P. Druschel, “Experi-
ences in building and operating ePOST, a reliable peer-to-peer
application,” in Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems, W. Zwaenepoel,
Ed. ACM European Chapter, April 2006.

[20] A. Montresor, M. Jelasity, and Ö. Babaoglu, “Chord on
Demand,” in Proceedings of the 5th International Conference
on Peer-To-Peer Computing (P2P’05). IEEE Computer
Society, Aug. 2005.

[21] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why
do internet services fail, and what can be done about it?”
in USITS’03: Proceedings of the 4th conference on USENIX
Symposium on Internet Technologies and Systems. Berkeley,
CA, USA: USENIX Association, 2003, pp. 1–1.

[22] V. Paxson, “End-to-end routing behavior in the Internet,”
IEEE/ACM Transactions on Networking (TON), vol. 5, no. 5,
pp. 601–615, 1997.

[23] T. M. Shafaat, A. Ghodsi, and S. Haridi, “Handling Network
Partitions and Mergers in Structured Overlay Networks,” in
Proceedings of the 7th International Conference on Peer-to-
Peer Computing (P2P’07). IEEE Computer Society, Sep.
2007, pp. 132–139.

[24] T. M. Shafaat, A. Ghodsi, and S. Haridi”, “Dealing with
network partitions in structured overlay networks,” Peer-to-
Peer Networking and Applications (PPNA), vol. 2, no. 4, pp.
334–347, 2009.

[25] A. Shaker and D. S. Reeves, “Self-Stabilizing Structured Ring
Topology P2P Systems,” in Proceedings of the 5th Inter-
national Conference on Peer-To-Peer Computing (P2P’05).
IEEE Computer Society, Aug. 2005, pp. 39–46.

[26] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: a scal-
able peer-to-peer lookup protocol for internet applications,”
IEEE/ACM Transactions on Networking (TON), vol. 11, no. 1,
pp. 17–32, 2003.

158

