
Peer2View
a Peer-To-Peer HTTP-Live Streaming platform

Roberto Roverso1,2, Sameh El-Ansary1, Seif Haridi2
1 Peerialism Inc., Sweden, 2 KTH-Royal Institute of Technology, Sweden,

{roberto, sameh}@peerialism.com, haridi@kth.se

Abstract—Peer2View is a commercial peer-to-peer live video
streaming (P2PLS) system. The novelty of Peer2View is threefold:
i) It is the first P2PLS platform to support HTTP as transport
protocol for live content, ii) The system supports both single
and multi-bitrate streaming modes of operation, and iii) It makes
use of an application-layer dynamic congestion control to manage
priorities of transfers. Peer2View goals are to achieve substantial
savings towards the source of the stream while providing the same
quality of user experience of a CDN.

I. INTRODUCTION

In the last years, significant efforts have been made in
tackling the problem of distributing live content over peer-to-
peer networks. Both industry and academia have been trying
to come up with solutions to efficiently exploit spare upload
bandwidth of participating hosts to offload the broadcasting
origin and thus save on distribution costs. We find successful
examples in commercial systems like NewCoolstreaming [1]
and PPlive [2]. On the academic front instead, there have been
several attempts to build open source frameworks for stream-
ing, such as Tribler [3], but also to understand theoretical
limits of different overlay structures in terms of bandwidth
utilization.

Most of the aforementioned research and developed systems
assume a push mode of operation typical of older streaming
technologies, such as RTSP/RTP. In this model, a player
requests the playback of a stream from the streaming server,
the server then delivers the stream over UDP at a pace
determined by feedback information from the player, such as
acknowledgements or error notifications.

Lately however, the industry has moved on to other live
streaming technologies based on a pull model that utilizes
HTTP as transport protocol. All companies who have a major
say in the market including Microsoft, Adobe and Apple
have adopted adaptive HTTP-streaming as the main approach
for live broadcasting. This shift to HTTP has been driven
by a number of advantages: i) Routers and firewalls are
more permissive to HTTP traffic compared to the RTSP/RTP
ii) HTTP caching for real-time generated media is straight-
forward like any traditional web-content iii) The Content
Distribution Networks (CDNs) business is much cheaper when
dealing with HTTP downloads.

In adaptive HTTP live streaming, the mode of operation is
significantly different from RTSP/RTP in the way that it is the
player which periodically pulls parts of the content from the
streaming server. The latter instead simply encodes the content
and avails it as small HTTP files. The same stream is usually

encoded in a number of different qualities (bitrates) both for
audio and video content. It is then up to the player to decide
which quality to request and the pace at which fragments
should be retrieved.

Players are usually proprietary and closed source. As a
consequence, it is extremely difficult to make assumptions
about their internal heuristics and, in particular, about the
period between consecutive fragment requests, the time at
which the player will switch rates, or how the audio and video
will be interleaved.

In Peer2View, in order to cope with the unpredictability
of different player implementations and versions of those,
we treat the problem of reducing the load on the source of
the stream the same way it would be treated by a Content
Distribution Network (CDN): as a caching problem.

II. OVERVIEW

In this section, we provide a general description of
Peer2View and we highlight some of the most interesting
features of the platform. Our previous work on SmoothCache
[4], Peer2View’s research prototype, discusses more in detail
the functioning of the platform.

Distributed caching. The design of the HTTP live stream-
ing protocol was made such that every fragment is fetched as
an independent HTTP request that could be easily scheduled
on CDN nodes. The difference in Peer2View is that the
caching nodes are consumer machines and not dedicated
nodes. The player is directed to order from our local P2PLS
agent which acts as an HTTP proxy. All traffic to/from the
source of the stream as well as other peers passes by the
agent. Upon a content fragment request, Peer2View does its
best to timely retrieve the data requested by the player from
other peers in the overlay. If a fragment cannot be retrieved
from any other peer on time, the agent downloads the missing
amount of data from the CDN. We engineered this process in
such a way to make the agent totally transparent to the player
and the CDN. In this manner, our platform is able supports
all HTTP-based live steaming players.

Overlay Construction and Maintenance. Peer2View is
implemented as a completely self-organizing system based on
a mesh overlay network. When joining the system, peers are
introduced to other participants by a tracker. After that, they
utilize gossip to build a random overlay. Gossip is also used
for dissemination of live peer characteristics such as maxi-
mum/average throughput, connectivity information, playback
quality, buffering point and network location.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in
the IEEE P2P 2012 proceedings

978-1-4673-2862-3/12/$31.00 ©2012 IEEE 65

Fig. 1. Live Peer2View Statistics

Peers choose partners for the delivery of the stream by sam-
pling their local view and by ranking neighbors according to
the aforementioned characteristics. By means of a distributed
heuristic, peers are placed proportionally closer to the source
of the stream depending on their upload capacity to improve
efficiency of the distribution.

Transport. Peer2View is built on top of a UDP-based trans-
port library which provides security as well as reliability. Peers
are authenticated towards a central authority upon joining the
system. All traffic is encrypted through SSL and end-to-end
integrity of data is guaranteed by signing all data transferred
data chunks. The library implements the same flow control and
error correction of TCP. Regarding the congestion control, we
use the DTL dynamic congestion control protocol [5], which
allows changing priority of transfers at runtime. Priority levels
range from lower-than-best-effort, designed to yield to TCP,
up to four times more aggressive than TCP.

The library utilizes the state-of-the art NATCracker [6]
traversal scheme to provide connectivity between peers in
presence of network address translators. In our deployments,
we have observed an average bi-directional connection proba-
bility of around 81%, whereas one-way connectivity could be
achieved in 8% of cases with a remaining failed establishment
rate of 11%.

Proactive caching. Peer2View strives to increase the over-
lay utilization by retrieving fragments ahead of time, before
the player actually requests them.

In order to avoid contention between transfers of fragments
closer to the playback deadline and the ones being pre-fetched,
Peer2View pre-fetches using the the lowest transfer priority
level of DTL. As the fragment being pre-fetched comes closer
to playback, the priority is increased to speed up the transfer.

III. PERFORMANCE

We measure performance according to two metrics: savings
towards the source of the stream and quality of user experi-
ence. Savings are evaluated by accounting the amount of data
retrieved from P2P network over the total amount consumed
by the peers.

Quality of user experience (QoE) is measured first using
cumulative buffering, i.e. how long the player spent waiting
for content. This time includes both the initial startup delay
and the time the player paused the playback because of lack
of content. Second indicator of QoE is the bitrate a peer was
able to play when using Peer2View compared to the one it
would play going directly to the CDN.

Our evaluation of Peer2View conducted on the open Internet
using both automated tests on a 5000-large test network
contributed by volunteers and in collaboration with our com-
mercial partners suggests that savings range normally between
85% to 90% using a multi-bitrate stream of 3 qualities:
380kbps, 700kbps and 1.4Mbps.

In all tests, we noticed nearly the same level of QoE of
the CDN, with only 0.5% to 3% of the peers experiencing
a larger cumulative buffering time than the CDN and 1% to
2.5% of the peers playing a lower bitrate when using both
CDN and P2P compared to the case when playing directly
from the CDN.

IV. DEMONSTRATION

During the demonstration we expect to conduct live runs on
our test network. Our graphical tools allows us to observe the
live evolution of a number of metrics, such as the ones shown
in Figure 1, and the shape of the overlay network over time.

Interested participants will be welcome to join the demo by
installing our client and play the stream with Peer2View.

REFERENCES

[1] Li, B. et al., Inside the New Coolstreaming: Principles, Measurements
and Performance Implications, INFOCOM, 2008

[2] A. Shahzad , A. Mathur and H. Zhang, Measurement of Commercial
Peer-to-Peer Live Video Streaming, Workshop on Recent Advances in
P2P Streaming, 2006.

[3] N. Zeilemaker, M. Capota, A. Bakker, J. Pouwelse, Tribler: Search and
Stream, IEEE P2P 2011, Kyoto, Japan

[4] R. Roverso, S. El-Ansary and S. Haridi, SmoothCache: HTTP-Live
Streaming Goes Peer-to-Peer, NETWORKING 2012, May 2012, Prague.

[5] R. Reale, R. Roverso, S. El-Ansary and S. Haridi, DTL: Dynamic
Transport Library for Peer-To-Peer Applications, IDCDN 2012, January
2012, Hong Kong, China.

[6] R. Roverso , S. El-Ansary and S. Haridi, NATCracker: NAT Combinations
Matter, ICCCN ’09, August 2009, San Francisco (CA), United States.

66

