
Robust Fault-Tolerant Majority-Based Key-Value

Store Supporting Multiple Consistency Levels

Ahmad Al-Shishtawy∗†, Tareq Jamal Khan∗, and Vladimir Vlassov∗

∗KTH Royal Institute of Technology, Stockholm, Sweden

{ahmadas, tareqjk, vladv}@kth.se
†Swedish Institute of Computer Science, Stockholm, Sweden

ahmad@sics.se

Abstract—The wide spread of Web 2.0 applications with
rapidly growing amounts of user generated data, such as, wikis,
social networks, and media sharing, have posed new challenges on
the supporting infrastructure, in particular, on storage systems.
In order to meet these challenges, Web 2.0 applications have to
tradeoff between the high availability and the consistency of their
data. Another important issue is the privacy of user generated
data that might be caused by organizations that own and control
datacenters where user data are stored. We propose a large-scale,
robust and fault-tolerant key-value object store that is based on
a peer-to-peer network owned and controlled by a community of
users. To meet the demands of Web 2.0 applications, the store
supports an API consisting of different read and write operations
with various data consistency guarantees from which a wide
range of web applications would be able to choose the operations
according to their data consistency, performance and availability
requirements. For evaluation, simulation has been carried out to
test the system availability, scalability and fault-tolerance in a
dynamic, Internet wide environment.

Keywords-peer-to-peer; key-value store; consistency models;
distributed hash table; majority-based quorum technique.

I. INTRODUCTION

The emergence of Web 2.0 opened the door to new ap-

plications by allowing users to do more than just retrieving

of information. Web 2.0 applications facilitate information

sharing, and collaboration between users. The wide spread

of Web 2.0 applications, such as, wikis, social networks, and

media sharing, resulted in a huge amount of user generated

data that places great demands and new challenges on storage

services. An Internet-scale Web 2.0 application serves a large

number of users. This number tends to grow as popularity of

the application increases. A system running such application

requires a scalable data engine that enables the system to

accommodate the growing number of users while maintaining

a reasonable performance. Low (acceptable) response time is

another important requirement of Web 2.0 applications that

needs to be fulfilled despite of uneven load on application

servers and geographical distribution of users. Furthermore,

the system should be highly available as most of the user

requests must be handled even when the system experiences

partial failures or has a large number of concurrent requests.

As traditional database solutions could not keep up with the

increasing scale, new solutions, which can scale horizontally,

were proposed, such as, PNUTS [1] and Dynamo [2].

However there is a trade-off between availability and per-

formance on one hand and data consistency on the other. As

proved in the CAP theorem [3], for distributed systems only

two properties out of the three – consistency, availability and

partition-tolerance – can be guaranteed at any given time.

For large scale systems, that are geographically distributed,

network partition is unavoidable [4]; therefore only one of

the two properties, either data consistency or availability, can

be guaranteed in such systems. Many Web 2.0 applications

deal with one record at a time, and employ only key based

data access. Complex querying, data management and ACID

transactions of relational data model are not required in such

systems. Therefore for such applications a NoSQL key-value

store would suffice. Also Web 2.0 applications can cope with

relaxed consistency as, for example, it is acceptable if one’s

blog entry is not immediately visible for some of the readers.

Another important aspect associated with Web 2.0 appli-

cations is the privacy of user data. Several issues lead to

increasing concerns of users, such as, where the data is stored,

who owns the storage, and how stored data can be used (e.g.

for data mining). Typically a Web 2.0 application provider

owns datacenters where user data are stored. User data are

governed by a privacy policy. However, the provider may

change the policy from time to time, and users are forced

to accept this if they want to continue using the application.

This resulted in many lawsuits during the past few years and

a long debate about how to protect user privacy.

Peer-to-Peer (P2P) networks [5] offers an attractive solution

to Web 2.0 storage systems. First, because they are scalable,

self-organized, and fault-tolerant; second, because they are

typically owned by the community, rather than a single or-

ganization, thus allow to solve the issue of privacy.

In this paper, we propose a P2P-based object store with a

flexible read/write API allowing the developer of a Web 2.0

application to trade data consistency for availability in order to

meet requirements of the application. Our design uses quorum-

based voting as a replica control method [6]. Our proposed

replication method provides better consistency guaranties than

those provided in a classical DHT [7] but yet not as expensive

as consistency guaranties of Paxos based replication [8]

Our key-value store is implemented as a Distributed Hash

Table (DHT) [7] using Chord algorithms [9]. Our store ben-

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.110

589

efits from the inherent scalability, fault-tolerance and self-

management properties of a DHT. However, classical DHTs

lack support for strong data consistency required in many

applications. Therefore a majority-based quorum technique is

employed in our system to provide strong data consistency

guarantees. As mentioned in [10], this technique, when used in

P2P systems, is probabilistic and may lead to inconsistencies.

Nevertheless, as proved in [10], the probability of getting

consistent data using this technique is very high (more than

99%). This guarantee is enough for many Web 2.0 applications

that can tolerate relaxed consistency.

To evaluate our approach, we have implemented a prototype

of our key-value store and measured its performance by

simulating the network using real traces of Internet latencies.

II. RELATED WORK

This section presents the necessary background to our

approach and algorithms presented in this paper, namely: Peer-

to-peer networks, NoSQL data stores, and consistency models.

A. Peer-to-Peer Networks

Peer-to-peer (P2P) refers to a class of distributed network ar-

chitectures that is formed between participants (usually called

nodes or peers) on the edges of the Internet. P2P is becoming

more popular as edge devices are becoming more powerful in

terms of network connectivity, storage, and processing power.

P2P networks are scalable and robust. The fact that each

peer plays the role of both client and server allows P2P

networks to scale to large number of peers, because adding

more peers increases the capacity of the system (such as

storage and bandwidth). Another important factor that helps

P2P to scale is that peers act as routers. Thus each peer needs

only to know about a subset of other peers. The decentralized

nature of P2P networks improves their robustness. There is

no single point of failure, and P2P networks are designed to

tolerate churn (joins, leaves and failures of peers).

Structured P2P network, such as Chord [9], maintains a

structure of overlay links. Using this structure allows peers to

implement a DHT [7]. Given a key, any peer can efficiently

retrieve or store the associated data by routing (in log n hops)

a request to the peer responsible for the key. Maintenance of

the mapping of keys to peers and of the routing information is

distributed among the peers in such a way that churn causes

minimal disruption to the lookup service. This maintenance

is automatic and does not require human involvement. This

feature is known as self-organization.

1) Symmetric Replication: Symmetric replication

scheme [11], [12] has been used in our system to replicate

data at several nodes. Given a key i, a replication degree f ,

and the size of the identifier space N , symmetric replication

is used to calculate the keys of replicas. The key of the x-th

(1 ≤ x ≤ f) replica of the data identified by the key i is

computed as follows:

r(i, x) = (i+ (x− 1)N/f) mod N (1)

The advantage of symmetric replication over successor repli-

cation [9] is that each join or leave of a node requires only

O(1) messages to be exchanged to restore replicas; whereas

the successor replication schema requires O(f) messages.

B. Consistency Models

In this context, consistency models define rules that help

developers to predict the results of read/write operations

performed on data objects stored in a distributed data store.

Each particular data store supports a consistency model that

heavily affects it performance and guaranties. Most relevant

consistency models for our discussions are the following.

• Sequential consistency offers strong guaranties. All reads

and writes appear as if they were executed in a sequential

order; hence, every read returns a latest written value.

• Eventual consistency guarantees that after sufficiently

long period of the absence of new writes, all read

operations will return the latest written value.

• Timeline consistency is weaker than sequential consis-

tency because it allows a read operation to return a stale

value; however, it is stronger than eventual consistency

as it guaranties that the returned (stale) value includes all

previous updates.

C. NoSQL Datastores

This section provides some insights into the properties and

consistency models of two large-scale data storage systems,

Amazon’s Dynamo and Yahoo!’s PNUTS.

1) Dynamo: Amazon’s Dynamo [2] is a distributed key-

value data store designed to provide a large number of services

on the Amazon’s service oriented platform with an always-on

experience despite of certain failure scenarios such as network

partitions and massive server outages. These services also have

a stringent latency requirement even under high load.

Dynamo is primarily designed for the applications that

require high write availability. It provides eventual consistency

so that it sacrifices data consistency under certain failure

scenarios or high write concurrency in order to achieve higher

availability, better operational performance, and scalability.

Conflicting versions are tolerated in the system during writes.

However, the divergent versions must be detected and eventu-

ally reconciled. This is done during reads.

Nodes in the system form a ring structured overlay network

and use consistent hashing for data partitioning. The system

exposes two operations - get(key) and put(key, object, con-

text) where context represents metadata about the object, e.g.

version implemented using vector clocks [13]. The context is

kept in the store in order to help the system to maintain its

consistency guarantee. Dynamo uses successor replication.

2) PNUTS: Yahoo!’s PNUTS [1] is a geographically dis-

tributed and replicated large-scale data storage system cur-

rently being used by a number of Yahoo! applications. The

system offers relaxed data consistency guarantees in order to

decrease latency of operations, improve access concurrency

and scalability to be able to cope with ever-increasing load.

590

Although the eventual consistency model adopted by Dy-

namo is a good fit for many web services, the model is vulnera-

ble to exposing inconsistent data to applications because, even

though it guarantees all updates to reach all replicas eventually,

it does not guarantee the same order of updates at different

replicas. Therefore, for many web applications, this model is

a weak and inadequate option for data consistency.

In contrast to Dynamo, PNUTS offers a stronger consistency

model, called timeline consistency, to applications that can live

with slightly stale but valid data. It has been observed that

unlike traditional database applications many web applications

typically tend to manipulate only one data record at a time.

PNUTS focuses on maintaining consistency for single records

and provides a novel per-record timeline consistency model,

which guarantees that all replicas of a given record apply

updates in the exact same order. Developers can control the

level of consistency through the following operations: read-

any, read-critical, read-latest, write, and test-and-set-write.

The per-record timeline consistency model is implemented

by designating one replica of a record as the master replica to

which all updates are directed to be serialized as described

below. The mastership is assigned on a per-record basis,

therefore different records of the same table can have masters

at different regions. The mastership can migrate between

regions depending on the intensity of updates within a region.

PNUTS uses Yahoo! Message Broker (YMB), which is a

topic-based publish/subscribe system, to implement its asyn-

chronous replication with timeline consistency. When an up-

date reaches the record’s master, the master publishes it to the

YMB in the region. Once published, the update is considered

committed. YMB guarantees that updates published in a

particular YMB cluster will be asynchronously propagated to

all subscribers (replicas) and delivered in the publish order.

Master replica leverages these reliable publish properties of

YMB to implement timeline consistency. When the system

detects a change in mastership of a particular record, it also

publishes identity of the new master to YMB.

III. P2P MAJORITY BASED OBJECT STORE

In this paper, we propose a distributed key-value object

store supporting multiple consistency levels. Our store exposes

an API of read and write operations similar to the API of

PNUTS [1]. In our store, data are replicated at various nodes in

order to achieve fault-tolerance and improve availability, per-

formance, and scalability. Replication causes different versions

of an object to co-exist at the same time. In contrast to PNUTS,

which uses masters to provide timeline consistency, our system

uses a majority-based mechanism to provide multiple con-

sistency guarantees. Our approach to maintaining per-object

consistency using a quorum, rather than a master, eliminates a

potential performance bottleneck and a single point of failure

exposed by the master replica, and allows using our store in

a highly dynamic environment such as P2P networks.

Our system is based on a scalable structured P2P overlay

network. We use consistent hashing scheme [14] to partition

the key-value store and distribute partitions among peers.

Each peer is responsible for a range of keys and stores

corresponding key-value pairs. The hashing scheme has good

scalability in a sense that when a peer leaves or joins the

system, only immediate neighbors of the peer are affected as

they need to redistribute their partitions.

Fig. 1. Architecture of a peer shown as layers

A. System Architecture

The architecture of a peer is depicted in Fig. 1. It consists

of the following layers.

• Application Layer is formed of applications that invoke

read/write operations of the API exposed by the Consis-

tency Layer to access the underlying key-value store in

the Data Layer with various consistency levels.

• Consistency Layer implements the following read and

write operations of the key-value store API. The opera-

tions follow timeline consistency and have semantics sim-

ilar to semantics of operations provided by PNUTS [1].

– Read Any (key) can return an older version of the

data even after a successful write. This operation has

lowest latency and can be used by applications that

prefer fast data access over data consistency.

– Read Critical (key, version) returns data with a

version, which is the same or newer than the re-

quested version. Using this operation, an application

can enforce read-your-writes consistency, i.e., the

application can read the version that reflects previous

updates made by the application.

– Read Latest (key) returns the latest version of the

data associated with the given key, and is expected

to have the highest latency compared to other reads.

This operation is useful for applications to which

consistency matters more than performance.

– Write (key, data) stores the given data associated with

the given key. The operation overwrites existing data,

if any, associated with the given key.

– Test and Set Write (key, data, version) writes the data

associated with the key only if the given version is

the same as the current version in the store, otherwise

the update is aborted. This operation can be used to

implement transactions.

• DHT Layer of a peer hosts a part of the DHT (the

key-value object store) for which the peer is responsible

according to consistent hashing. It also stores replicas

of data of other peers. The read and write operations

described above are translated into Get (key, attachment)

and Put (key, value, attachment) operations implemented

in the DHT Layer. The attachment argument contains

metadata for the operations, e.g., a version number. A

591

Algorithm 1 Replica Location and Data Access

1: procedure GETNODES(key) � Locates nodes responsible for replicas

2: for x← 1, f do � f is the replication degree

3: id← r(key, x) � Calculate replica id using equation 1

4: nodes[x]← LOOKUP(ids) � Lookup node responsible for replica id

5: return nodes[] � Returns references to all nodes responsible for replicas

6: receipt of READREQ(key, rank) from m at n

7: (val, ver) ← LOCALSTORE,READ(key, rank)

8: sendto m : READRESP(key, val, ver)

9: receipt of VERREQ(key, rank) from m at n

10: (val, ver) ← LOCALSTORE.READ(key, rank)

11: sendto m : VERRESP(key, ver)

12: receipt of WRITEREQ(key, rank, value, ver) from m at n

13: LOCALSTORE.WRITE(key, rank, value, ver) � Fails if data is locked

14: sendto m : WRITEACK(key)

15: receipt of LOCKREQ(key, rank) from m at n

16: ver ← LOCALSTORE.LOCK(key, rank) � Fails if data is locked

17: sendto m : LOCKACK(key, ver)

18: receipt of WRITEUNLOCKREQ(key, rank, value, ver) from m at n

19: if LocalStore.IsLocked then � Fails if data is unlocked

20: LOCALSTORE.WRITE(key, rank, value, ver)

21: LOCALSTORE,UNLOCK(key, rank)

22: sendto m : WRITEUNLOCKACK(key)

Get/Put operation looks up the node responsible for the

given key using the underlying Chord Layer. After the

key is resolved, the responsible node is contacted directly

through the Network Layer to perform the requested

operation. The DHT Layer also manages data handover

and recovery caused by churn.

• Chord Layer performs lookup operations requested by

the upper DHT Layer efficiently using the Chord lookup

algorithm [9] and returns the address the node responsible

for the given key. The layer enables nodes to join or leave

the ring, also carries out periodic stabilization to keep

network pointers correct in the presence of churn.

• Network Layer provides simple interfaces for send-

ing/receiving messages to/from peers.

B. Algorithms

In this section, we describe the read/write operations intro-

duced in Section III-A and present corresponding algorithms.

Algorithm 1 includes common procedures used by other

algorithms. The algorithms are simplified and some practical

issues such as timeouts and error handling are not presented.

1) Read-Any: The Read-Any operation (Algorithm 2) sends

the read request to all nodes hosting replicas (replicas there-

after) and, as soon as it receives the first successful response,

it returns the received data. If the data is found locally, Read-

Any returns immediately. If no successful response is received

within a timeout, the operation fails, e.g., raises an exception.

Read-Any also fails if it receives failure responses from all

replicas. A failure response is issued when data is not found at

the expected node or lookup fails at the Chord layer because of

churn. Although the default is to send requests to all replicas,

an alternative design choice is to send requests to two random

replicas [15] with a view to reducing the number of messages.

Algorithm 2 ReadAny

1: boolean firstResponse ← true

2: procedure READANY(key) � Called by application

3: nodes[] ← GETNODES(key) � Nodes hosting replicas

4: for i← 1, f do

5: sendto nodes[i] : READREQ(key, i) � Request replica i of key key

6: receipt of READRESP(key, val, ver) from m at n

7: if firstResponse then � Note that version ver is not used

8: firstResponse ← false

9: return (key, val) � Return (key, val) pair to application

10: else DONOTHING()

Algorithm 3 ReadCritical

1: integer version ← 0, boolean done ← false

2: procedure READCRITICAL(key, ver) � Called by application

3: version ← ver

4: nodes[] ← GETNODES(key) � Nodes hosting replicas

5: for i← 1, f do

6: sendto nodes[i] : READREQ(key, i)

7: receipt of READRESP(key, val, ver) from m at n

8: if not done and ver ≥ version then

9: done ← true

10: return (key, val, ver) � Return (key, val, ver) to application

11: else DONOTHING()

2) Read-Critical: The Read-Critical operation (Algo-

rithm 3) sends read requests to all nodes hosting replicas

(replicas thereafter) and, as soon as it receives data with a

version not less than the required version, it returns the data

it has received. Read-Critical fails in the case of timeout. It

also fails if it receives failure responses or old versions from

all replicas. An alternative design choice is to send requests

to a majority of replicas to reduce the number of messages.

If all nodes in the majority are alive during the operation, it

is guaranteed that the requested version will be found (if it

exists) because write operations also use majorities.

3) Read-Latest: The Read-Latest operation (Algorithm 4)

sends requests to all replicas and, as soon as it receives

successful responses from a majority of replicas, it returns the

latest version of the received data. Reading from a majority

of replicas R guaranties to return the latest version because R
always overlaps with the Write majority W , as |R|+ |W | > n
(n is the number of replicas). Read-Latest fails in the case of

timeout or when it receives failures from a majority of replicas.

4) Write: First, the Write operation (Algorithm 5) sends

version requests to all nodes hosting replicas (replicas there-

after) and waits for responses from a majority of replicas.

Requesting from a majority ensures that the latest version

number is obtained. Note that for new inserts, the version

number 0 is returned as nodes responsible for replicas do not

have data. Next, the operation increments the latest version

number and sends a write request with the new version of data

to all replicas. When a majority of replicas has acknowledged

the write requests, the Write operation successfully returns. If

two or more distinct nodes try to write data with the same

version number, the node with the highest identifier wins.

The Write operation can fail for a number of reasons such

as timeout, lookup failure, a replica is being locked by a Test-

and-Set-Write operation, or collision with another write.

592

Algorithm 4 ReadLatest

1: integer version ← -1, count ← 0

2: object value ← null, boolean done ← false

3: procedure READLATEST(key) � Called by application

4: nodes[] ← GETNODES(key) � Nodes hosting replicas

5: for i← 1, f do

6: sendto nodes[i] : READREQ(key, i)

7: receipt of READRESP(key, val, ver) from m at n

8: if not done then

9: count ← count + 1

10: if ver > version then � Find the latest version and value

11: version ← ver

12: value ← val

13: if count = f/2 + 1 then � Reached majority?

14: done ← true

15: return (key, value, version) � Return to application

16: else DONOTHING()

Algorithm 5 Write

1: integer maxVer ← -1, count ← 0, object value ← null

2: boolean done1 ← false, done2 ← false

3: procedure WRITE(key, val) � Called by application

4: nodes[] ← GETNODES(key) � Nodes hosting replicas

5: value ← val

6: for i← 1, f do

7: sendto nodes[i] : VERREQ(key, i)

8: receipt of VERRESP(key, ver) from m at n

9: if not done1 then

10: count ← count + 1

11: if ver > maxVer then � Find the latest version

12: maxVer ← ver

13: if count = f/2 + 1 then � Reached majority?

14: done1 ← true

15: maxVer ← maxVer + 1

16: WRITEVER(key, maxVer)

17: else DONOTHING()

18: procedure WRITEVER(key,ver)

19: nodes[] ← GETNODES(key)

20: for i← 1, f do

21: sendto nodes[i] : WRITEREQ(key, i, value, ver)

22: receipt of WRITEACK(key) from m at n

23: if not done2 then

24: count ← count + 1

25: if count = f/2 + 1 then � Majority

26: done2 ← true

27: return (key, SUCCESS) � Return to application

28: else DONOTHING()

5) Test-and-Set-Write: The Test-and-Set-Write operation

(Algorithm 6) starts with sending a lock request to all nodes

hosting replicas (replicas thereafter). Each replica, if the data is

unlocked, locks the data and sends a successful lock response

together with the current version number to the requesting

node. After receiving lock responses from a majority of repli-

cas, the operation tests if the latest version number obtained

from the majority, matches the required version number. If they

do not match, the operation aborts (sends unlock requests to all

replicas and returns). If they do match, the given data is sent to

all replicas to be written with a new version number. Each of

the replicas, which have locked data, writes the received new

version, unlocks the data, and sends a write acknowledgement

to the requesting node. As soon as acknowledgements are

received from a majority of replicas, the operation successfully

completes. Note that in order to ensure high read availability,

Algorithm 6 Test-and-Set-Write

1: integer version ← 0, maxVer ← -1, count ← 0

2: object value ← null, boolean done1 ← false, done2 ← false

3: procedure TSWRITE(key, val, ver) � Called by application

4: nodes[] ← GETNODES(key) � Nodes hosting replicas

5: value ← val, version ← ver

6: for i← 1, f do

7: sendto nodes[i] : LOCKREQ(key, i)

8: receipt of LOCKACK(key, ver) from m at n

9: if not done1 then

10: count ← count + 1

11: if ver > maxVer then � Find the latest version

12: maxVer ← ver

13: if count = f/2 + 1 then � Reached majority?

14: done1 ← true

15: if maxVer equals version then � Test version then set value

16: maxVer ← maxVer + 1

17: WRITEUNLOCKVER(key, version)

18: else

19: ABORT() � Unlocks the replicas

20: return (key, ABORTED) � Return to application

21: else DONOTHING()

22: procedure WRITEUNLOCKVER(key,ver)

23: nodes[] ← GETNODES(key)

24: for i← 1, f do

25: sendto nodes[i] : WRITEUNLOCKREQ(key, i, value, ver)

26: receipt of WRITEUNLOCKACK(key) from m at n

27: if not done2 then

28: count ← count + 1

29: if count = f/2 + 1 then � Majority

30: done2 ← true

31: return (key, SUCCESS) � Return to application

32: else DONOTHING()

read operations are allowed to read the locked data.

A Test-and-Set-Write operation can fail for a number of

reasons such as timeout, lookup failure, a replica is being

locked by another Test-and-Set-Write operation, or collision

with another write. When the operation fails, the replicas

locked by it have to be unlocked, and this is requested by the

node which has initiated the operation. After the operation has

completed, a late lock request issued by that operation might

arrive at a replica which was not a part of the majority. In

this case, according to the algorithm, the replica locks the data

and sends a lock response to the requesting node, which, upon

receiving the response, requests to unlock the data because the

operation has been already completed.

IV. DISCUSSION

A. Majority Versus Master

Even though the API of PNUTS is preserved in our key-

value store and semantics of read/write operations are kept

largely unchanged; our majority-based approach to implement

the operations is different from the master-based approach

adopted in PNUTS. In PNUTS, all writes to a given record

are forwarded to the master replica, which ensures that updates

are applied to all replicas in the same order. Serialization of

updates through a single master works efficiently for PNUTS

due to the high write locality (the master is placed in the

geographical region with the highest intensity of updates). The

master-based consistency mechanism can generally hurt the

scalability of a system. It leads to uneven load distribution and

593

Operation
P2P Object Store PNUTS
Hops messages Hops messages

Read-Any 2 4 2 2

Read-Critical 2 5 3 3

Read-Latest 2 5 3 3

Write 4 10 5 5

Test-and-Set-Write 4 10 5 5

TABLE I
ANALYTICAL COMPARISON OF THE COST OF EACH OPERATION

makes the master replica a potential performance bottleneck.

Furthermore, the master represents a single point of failure

and may cause a performance penalty by delaying read/write

operations until the failed master is restored.

In order to eliminate the aforementioned potential draw-

backs of using the master-based consistency mechanism in

a distributed key-value store deployed in a dynamic environ-

ment, we propose to use a majority-based quorum technique to

maintain consistency of replicas when performing read/write

operations. Using a majority rather than a single master

removes a single point of failure and allows the system to

withstand a high level of churn in a dynamic environment

that was not considered for the stable and reliable environment

(data centers) of PNUTS. Our mechanism is decentralized so

that any node in the system receiving a client request can co-

ordinate read/write operations among replicas. This improves

load balancing. However, delegating the coordination role to

any node in the system while maintaining the required data

consistency, incurs additional complexity due to distribution

and concurrency.

B. Performance Model

The number of network hops and the corresponding number

of messages for each API operation of both PNUTS and

our system, are compared in Table I. Worst case scenarios

are considered for both systems and the replication degree is

assumed to be 3. For simplicity, we abstract low-level details

of communication protocols and count only the number of

communication steps (as hops) and a corresponding number

of messages. For example, in the case of PNUTS, we assume

2 hops and 2 messages for a roundtrip (request/response)

interaction of a requesting node with a master in a local region;

Interaction with a master in a remote region adds one more

hop and entails one extra message. The asynchronous message

propagation to replicas in YMB is not included (as, to our best

knowledge, details of YMB were not published at the time this

paper was written). For our store, we assume that it takes 2

hops to send a request from a requesting node to all replicas

and receive responses from a majority, whereas the number

of messages depends on the replication degree. It is worth

noting that, taking into account the asynchronous messages

propagated by YMB, both systems use about the same amount

of messages, which is proportional to the number of replicas.

C. Other Approaches

Other approaches could have been used to implement our

P2P based object store. For example, a P2P based self-

healing replicated state machine [16] could have been used

to implement the read/write operations. However, we believe

that Paxos based replicated state machine is too powerful for

implementing timeline consistency and should only be used

if stronger guaranties and/or more powerful operations (e.g.,

transactions) are required.

V. EVALUATION

We present a simulation-based performance evaluation of

our majority based key-value store in various scenarios. We are

mainly interested in measuring the operation latency and the

operation success ratio under different conditions by varying

churn rate, request rate, network size, and replication degree.

To evaluate the performance and to show the practicality of

our algorithms, we built a prototype implementation of our

object store using the Kompics [17] which is a framework

for building and evaluating distributed systems in simulation,

local execution, and distributed deployments. In order to make

network simulation more realistic, we used the King latency

dataset, available at [18], that contains measurements of the

latencies between DNS servers obtained using the King [19]

technique. To evaluate the performance of our algorithms

in various churn scenarios, we have used the lifetime-based

node failure model [20], [21] with the shifted Pareto lifetime

Distribution. Note that the smaller the mean life time, the

higher the level of churn. In our experiments, the mean lifetime

of 10 and 30 minutes considered to be very low and used to

stress test the system in order to find the breaking point.

When evaluating our approach, we did not make a quan-

titative comparison of our approach with PNUTS [1] mainly

because we did not have access to details of PNUTS and YMB

algorithms, which, to our best knowledge, were not published

at the time this paper was written. Therefore we could not

accurately implement PNUTS algorithms in our simulator

in order to compare PNUTS with our system. Furthermore,

PNUTS was designed to run on geographically distributed

but fairly stable datacenters, whereas our system targets an

Internet-scale dynamic P2P environment with less reliable

peers and high churn. The reason for us to choose such

unreliable environment over datacenters is mainly to reduce

costs and improve data privacy. We expect that master-based

read/write algorithms used in PNUTS will perform better in

a stable environment whereas our quorum-based algorithms

will win in a highly dynamic environment as discussed in

Section IV-A.

A. Varying Churn Rate

In this experiment, the system is run with various churn

rate represented as the mean node lifetime. Fig. 2(a) shows

the impact of churn on latency. The latency for each operation

does not vary too much for different levels of churn.

As expected, Read-Any and Read-Critical perform much

faster than Read-Latest. Read-Latest shows higher latency

because it requires responses from a majority of replicas,

whereas other reads do not require a majority in order to

complete. Although the Read-Critical latency is expected to be

higher than the Read-Any latency (as in the case for PNUTS)

594

 200

 400

 600

 800

 1000

 1200

 10 30 60 120 180

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Mean Node Lifetime (min)

(a) Latency Vs Churn (Lifetime based Model)

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 30 60 120 180

S
uc

ce
ss

 R
at

io

Mean Node Lifetime (min)

(b) Success Ratio Vs Churn (Lifetime based Model)

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Fig. 2. The effect of churn on operations (lower
mean lifetime = higher level of churn)

 200

 400

 600

 800

 1000

 1200

 500 2000 10000

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Operation Inter-arrival Time (ms)

(a) Latency Vs Operation Rate

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 500 2000 10000

S
uc

ce
ss

 R
at

io

Operation Inter-arrival Time (ms)

(b) Success Ratio Vs Operation Rate

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Fig. 3. The effect of operation rate operations
(lower inter-arrival time = higher op rate)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 500 1000 1500

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Initial Number of Nodes

(a) Latency Vs Network Size

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 500 1000 1500

S
uc

ce
ss

 R
at

io

Initial Number of Nodes

(b) Success Ratio Vs Network Size

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Fig. 4. The effect of network size on operations

because the former requests a specific version, latencies of

both operations in our case are almost identical. This is

because a write operation sends updates to all replicas and

completes as soon as it receives acknowledgements from a

majority of replicas, and thus, the first (fastest) reply to a

Read-Critical request with a high probability will come from

a node which has the required version. Compare to reads, both

Write and Test-and-Set-Write have higher latency because they

involve more communication steps than reads. Furthermore,

Test-and-Set-Write has slightly higher latency than Write due

to possible contention because of locking.

Fig. 2(b) shows operation success ratio versus churn rate

(represented as the mean node lifetime). As expected, the suc-

cess ratio degrades for increasing churn rates. As mentioned in

Section III, there are several reasons for failures of operations

due to churn. After analyzing the logs, the primary cause of

failures has been identified as the unavailability of data at the

responsible node. Another major reason is lookup failure.

B. Varying Operation Rate

Several experiments have been conducted to observe how

the system performs under different load scenarios in a dy-

namic environment. Read/write operations are generated using

an exponential distribution of inter-arrival time of operations.

The operation rate (load) is higher for lower mean inter-arrival

time. Fig. 3(a) shows the impact of the operation rate on

latency. The latency for each operation does not vary too much

for different operation rates. This is due to the simulation

that assumes unlimited computing resources (no hardware

bottlenecks). Nevertheless, these experiments show that our

system can serve the increasing number of requests despite

of churn (Fig. 3(b)), as it quickly heals after failures. One

interesting observation is that under the highest load in our

experiments, operations have the highest success ratio. This is

due to the fact that, when the intensity of writes in a dynamic

environment increases, the effect of churn on the success

ratio diminishes as the data are updated more often and, as

a consequence, the success ration of operations improves.

 0

 200

 400

 600

 800

 1000

 1200

 1 5 8 16 32

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Replication Degree

(a) Latency Vs Replication Degree

RA Latency
RC Latency
RL Latency
W Latency

TSW Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 5 8 16 32

S
uc

ce
ss

 R
at

io

Replication Degree

(b) Success Ratio Vs Replication Degree

RA Succ Ratio
RC Succ Ratio
RL Succ Ratio
W Succ Ratio

TSW Succ Ratio

Fig. 5. The effect of replication degree on operations

C. Varying P2P Network Size

In this experiment, we evaluate the scalability by running

the system with various network sizes (the number of nodes).

Fig. 4(a) shows the impact of the network size on latency.

For all operations, the latency grows when the network size

increases. However the increase is logarithmic because of the

logarithmic latency in the Chord Layer.

595

D. Varying Replication Degree

In this experiment, the system is run with various replication

degrees. Fig. 5(a) shows the impact of the replication degree

on the operation latency. The latency of Read-Any and Read-

Critical is highest when there is no replication, but it noticeably

decreases as more replicas are added. This is because both op-

erations complete after receiving the first successful response,

and having more replicas increase the probability to get the

response from a fast (close) node and hence reduce the latency.

For Read-Latest, Write, and Test-and-Set-Write operations the

latency gets slower with increasing replication degree. This is

because in these operations, a requesting node has to wait for

a majority of responses, and as the number of replicas grows,

the majority increases causing longer waiting time.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a majority-based key-value store (archi-

tecture, algorithms, and evaluation) intended to be deployed in

a large-scale dynamic P2P environment. The reason for us to

choose such unreliable environment over datacenters is mainly

to reduce costs and improve data privacy. Our store provides

a number of read/write operations with multiple consistency

levels and with semantics similar to PNUTS.

The store uses the majority-based quorum technique to

maintain consistency of replicated data. Our majority-based

store provides stronger consistency guarantees than guarantees

provided in a classical DHT but less expensive than guaranties

of Paxos-based replication. Using majority allows avoiding

potential drawbacks of a master-based consistency control,

namely, a single-point of failure and a potential performance

bottleneck. Furthermore, using a majority rather than a single

master allows the system to achieve robustness and withstand

churn in a dynamic environment. Our mechanism is decentral-

ized and thus allows improving load balancing and scalability.

Evaluation by simulation has shown that the system per-

forms rather well in terms of latency and operation success

ratio in the presence of churn.

In our future work, we intend to evaluate our approach

on larger scales and extreme values of load and churn rate,

and to optimize the algorithms in order to reduce the amount

of messages and improve performance. As the proposed key-

value store is to be used in a P2P environment, there is a

need to ensure security and protect to personal information by

using cryptographic means. This is also to be considered in

our future work.

ACKNOWLEDGMENTS

This research is supported by the E2E Clouds project funded

by the Swedish Foundation for Strategic Research (SSF), and

the Complex Service Systems (CS2) focus project, a part of

the ICT-The Next Generation (TNG) Strategic Research Area

(SRA) initiative at the KTH Royal Institute of Technology.

REFERENCES

[1] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“Pnuts: Yahoo!’s hosted data serving platform,” Proc. VLDB Endow.,
vol. 1, pp. 1277–1288, August 2008. [Online]. Available: http:
//dx.doi.org/10.1145/1454159.1454167

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” SIGOPS Oper. Syst.

Rev., vol. 41, pp. 205–220, October 2007. [Online]. Available:
http://doi.acm.org/10.1145/1323293.1294281

[3] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,” SIGACT

News, vol. 33, pp. 51–59, June 2002. [Online]. Available: http:
//doi.acm.org/10.1145/564585.564601

[4] W. Vogels, “Eventually consistent,” Queue, vol. 6, pp. 14–19, October
2008. [Online]. Available: http://doi.acm.org/10.1145/1466443.1466448

[5] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” Communications

Surveys & Tutorials, IEEE, vol. 7, no. 2, pp. 72–93, 2005.
[6] D. K. Gifford, “Weighted voting for replicated data,” in Proceedings

of the seventh ACM symposium on Operating systems principles, ser.
SOSP ’79. New York, NY, USA: ACM, 1979, pp. 150–162. [Online].
Available: http://doi.acm.org/10.1145/800215.806583

[7] F. Dabek, “A distributed hash table,” Ph.D. dissertation, Massachusetts
Institute of Technology, November 2005.

[8] L. Lamport, “Paxos made simple,” SIGACT News, vol. 32, no. 4, pp.
51–58, December 2001.

[9] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in ACM SIGCOMM’01, Aug. 2001, pp. 149–160.

[10] T. M. Shafaat, M. Moser, A. Ghodsi, T. Schütt, S. Haridi, and
A. Reinefeld, “On consistency of data in structured overlay networks,”
in Proceedings of the 3rd CoreGRID Integration Workshop, April 2008.

[11] A. Ghodsi, “Distributed k-ary system: Algorithms for distributed hash
tables,” Ph.D. dissertation, Royal Institute of Technology (KTH), 2006.

[12] A. Ghodsi, L. O. Alima, and S. Haridi, “Symmetric replication for struc-
tured peer-to-peer systems,” in Proceedings of The 3rd Int. Workshop

on Databases, Information Systems and P2P Computing, Trondheim,
Norway, 2005.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, pp. 558–565, July 1978. [Online].
Available: http://doi.acm.org/10.1145/359545.359563

[14] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings

of the twenty-ninth annual ACM symposium on Theory of computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 654–663.
[Online]. Available: http://doi.acm.org/10.1145/258533.258660

[15] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, pp. 1094–1104,
October 2001. [Online]. Available: http://dx.doi.org/10.1109/71.963420

[16] A. Al-Shishtawy, M. A. Fayyaz, K. Popov, and V. Vlassov, “Achieving
robust self-management for large-scale distributed applications,” in Self-

Adaptive and Self-Organizing Systems (SASO), 2010 4th IEEE Interna-

tional Conference on, October 2010, pp. 31 –40.
[17] C. Arad, J. Dowling, and S. Haridi, “Building and evaluating P2P

systems using the Kompics component framework,” in Peer-to-Peer

Computing (P2P’09). IEEE, Sep. 2009, pp. 93–94.
[18] “Meridian: A lighweight approach to network positioning,” http://www.

cs.cornell.edu/People/egs/meridian.
[19] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: estimating latency

between arbitrary internet end hosts,” in IMW’02: 2nd ACM SIGCOMM

Workshop on Internet measurment. ACM, 2002, pp. 5–18.
[20] J. S. Kong, J. S. Bridgewater, and V. P. Roychowdhury, “Resilience of

structured P2P systems under churn: The reachable component method,”
Computer Communications, vol. 31, no. 10, pp. 2109–2123, June 2008.

[21] D. Leonard, Z. Yao, V. Rai, and D. Loguinov, “On lifetime-based node
failure and stochastic resilience of decentralized peer-to-peer networks,”
IEEE/ACM Trans. Networking, vol. 15, no. 3, pp. 644–656, Jun. 2007.

596

